Learn More
A subset of central glutamatergic synapses are coordinately pruned and matured by unresolved mechanisms during postnatal development. We report that the human epilepsy gene LGI1, encoding leucine-rich, glioma-inactivated protein-1 and mutated in autosomal dominant lateral temporal lobe epilepsy (ADLTE), mediates this process in hippocampus. We created(More)
People with autism spectrum disorder are characterized by impaired social interaction, reduced communication, and increased repetitive behaviors. The disorder has a substantial genetic component, and recent studies have revealed frequent genome copy number variations (CNVs) in some individuals. A common CNV that occurs in 1 to 3% of those with(More)
Repeated induction of pre- and postsynaptic action potentials (APs) at a fixed time difference leads to long-term potentiation (LTP) or long-term depression (LTD) of the synapse, depending on the temporal order of pre- and postsynaptic activity. This phenomenon of spike-timing-dependent plasticity (STDP) is believed to arise by nonlinear processes that lead(More)
Apoptosis, or programmed cell death, forms an important part of the cellular regulation machinery. The Bcl-2 protein family, comprising of proapoptotic and antiapoptotic members, forms an important part of the cells internal apoptotic pathway. Overexpression of the antiapoptotic members of the family in a number of cancer cell lines renders them immune to(More)
Retinogeniculate connections undergo postnatal refinement in the developing visual system. Here we report that non-ion channel epilepsy gene LGI1 (leucine-rich glioma-inactivated), mutated in human autosomal dominant lateral temporal lobe epilepsy (ADLTE), regulates postnatal pruning of retinal axons in visual relay thalamus. By introducing an(More)
Previous studies have demonstrated the presence of functional glycine receptors (GlyRs) in hippocampus. In this work, we examine the baseline activity and activity-dependent modulation of GlyRs in region CA1. We find that strychnine-sensitive GlyRs are open in the resting CA1 pyramidal cell, creating a state of tonic inhibition that "shunts" the magnitude(More)
  • J. Brian Morgan, Yang Liu, Veena Coothankandaswamy, Fakhri Mahdi, Mika B. Jekabsons, William H. Gerwick +3 others
  • 2015
The biologically active lipopeptide kalkitoxin was previously isolated from the marine cyanobacterium Moorea producens (Lyngbya majuscula). Kalkitoxin exhibited N-methyl-D-aspartate (NMDA)-mediated neurotoxicity and acted as an inhibitory ligand for voltage-sensitive sodium channels in cultured rat cerebellar granule neurons. Subsequent studies revealed(More)
Evolutionarily old and conserved homeostatic systems in the brain, including the hypothalamus, are organized into nuclear structures of heterogeneous and diverse neuron populations. To investigate whether such circuits can be functionally reconstituted by synaptic integration of similarly diverse populations of neurons, we generated physically chimeric(More)
Abnormal approach-avoidance behavior has been linked to deficits in the mesolimbic dopamine (DA) system of the brain. Recently, increasing evidence has indicated that toll-like receptor 4 (TLR4), an important pattern-recognition receptor in the innate immune system, can be directly activated by substances of abuse, resulting in an increase of the(More)
The present study is aimed to investigated the firing activity of pyramidal neurons and interneurons in the medial prefrontal cortex (mPFC) in rats with bilateral intraventricular injection of 5,7-dihydroxytryptamine (5,7-DHT) by using in vivo extracellular recording. The results showed that the injection of 5,7-DHT reduced the 5-hydroxytryptamine (5-HT)(More)
  • 1