Learn More
In this study, we introduced a simple method for polydopamine-mediated immobilization of dual bioactive factors for the preparation of functionalized vascular graft materials. Polydopamine was deposited on elastic and biodegradable poly(lactic acid-co-ɛ-caprolactone) (PLCL) films, and a cell adhesive RGD-containing peptide and basic fibroblast growth factor(More)
Blends of PAni and PLCL are electrospun to prepare uniform fibers for the development of electrically conductive, engineered nerve grafts. PC12 cell viability is significantly higher on RPACL fibers than on PLCL-only fibers, and the electrical conductivity of the fibers affects the differentiation of PC12 cells; the number of cells positively-stained and(More)
Surface modification of tissue engineering scaffolds and substrates is required for improving the efficacy of stem cell therapy by generating physicochemical stimulation promoting proliferation and differentiation of stem cells. However, typical surface modification methods including chemical conjugation or physical absorption have several limitations such(More)
Natural vessel has three types of concentric cell layers that perform their specific functions. Here, the fabrication of vascular structure is reported by transfer printing of three different cell layers using thermosensitive hydrogels. Tetronic-tyramine and RGD peptide are co-crosslinked to prepare cell adhesive and thermosensitive hydrogels. The hydrogel(More)
Most polymeric vascular prosthetic materials have low patency rate for replacement of small diameter vessels (<5 mm), mainly due to failure to generate healthy endothelium. In this study, we present polydopamine-mediated immobilization of growth factors on the surface of polymeric materials as a versatile tool to modify surface characteristics of vascular(More)
Surface properties of biomaterials, such as hydrophobic/hydrophilic balance, chemical group distribution, and topography play important roles in regulation of many cellular behaviors. In this study, we present a bio-inspired coating of synthetic biodegradable poly(L-lactide-co-ɛ-caprolactone) (PLCL) films by using polydopamine for tunable cell behaviors(More)
Current advances in biomaterial fabrication techniques have broadened their application in different realms of biomedical engineering, spanning from drug delivery to tissue engineering. The success of biomaterials depends highly on the ability to modulate cell and tissue responses, including cell adhesion, as well as induction of repair and immune(More)
Cell-based therapy has been studied as an attractive strategy for therapeutic angiogenesis. However, obtaining a stable vascular structure remains a challenge due to the poor interaction of transplanted cells with native tissue and the difficulty in selecting the optimal cell source. In this study, we developed a cell patch of cocultured human umbilical(More)
In this study, thermosensitive hydrogels incorporated with multiple cell-interactive factors were developed as a substrate to form monolayer of human umbilical vein endothelial cells (HUVECs) that can be detached and transferrable to target sites as a cell-sheet in response to temperature change. The cell adhesive peptide (RGD) and growth factor (bFGF)(More)
Regeneration of healthy endothelium onto vascular graft materials is imperative for prevention of intimal hyperplasia and thrombogenesis. In this study, we investigated the effect of collagen type IV (COL-IV) immobilized onto electrospun nanofibers on modulation of endothelial cell (EC) function, as a potential signal to rapid endothelialization of vascular(More)