Yu A Reznikov

Learn More
Photorefractive diffraction gratings were studied in cells of homeotropically aligned pentyl-cyanobiphenyl liquid crystal. These holographic gratings were induced by the simultaneous and nonsimultaneous application of dc and coherent optical electric fields. The observed behavior was consistent with a predominantly surface-mediated photorefractive effect.(More)
Fast surface reorientation induced by a single 4-ns low-energy laser pulse in dye-doped liquid crystals is reported. The reorientation is due to light-induced modification of the surface anisotropy, which affects the liquid crystal's director through the appearance of a preferred direction on the irradiated surface. The detected signals can be interpreted(More)
Light-induced director reorientation in dye-doped nematic liquid crystals was recently reported to be an efficient method of writing permanent holographic gratings with high sensitivity [Phys. Rev. Lett. 82, 1855 (1999)]. We report the achievement of stable director reorientation in the same materials by means of a single 4-ns pulse of the second harmonic(More)
When captured by a flat nematic-isotropic interface, colloidal particles can be dragged by it. As a result spatially periodic structures may appear, with the period depending on particle mass, size, and interface velocity (J.L. West, A. Glushchenko, G.X. Liao, Y. Reznikov, D. Andrienko, M.P. Allen, Phys. Rev. E 66, 012702 (2002)). If liquid crystal is(More)
We show that adsorption of dye molecules control the light-induced alignment of dye-doped nematic liquid crystal (LC) on a nonphotosensitive polymer surface. The dependencies of light-induced twist structures on exposure, thermal baking, thickness, and aging before irradiation of the LC cells allowed us to propose the following mechanism for the alignment.(More)
Excess ion adsorption gamma induced by the polarization image forces in the system of a metal electrode/symmetric electrolyte solution separated by an insulating interlayer has been calculated. The adopted theoretical scheme involves the Coulomb Green's function in a three-layer system with sharp interfaces and specular reflection at them. The influence of(More)
Light-induced anchoring of the molecular director is reported to be an efficient method for writing permanent holographic gratings in dye-doped liquid crystals. We have achieved higher sensitivity and spatial resolution in these materials with other methods. An energy density as low as 10(-1) J/cm(2) was sufficient to write gratings with a resolution higher(More)
We present basic characteristics and a model of photoinduced anchoring of liquid crystals (LCs) on a chalcogenide surface. It was found that characteristics of the alignment strongly depend on the LC material for the same chalcogenide glass. The photoalignment is partially reversible and can be controlled by changing the light polarization direction. We(More)
It was shown that irradiation of a nematic liquid crystal doped with metal nanoparticles in the visible near the plasmon resonance band led to strong thermal changes of the refractive indices. The effect was studied by recording of dynamic optical gratings in the colloid. Nanoparticles "worked" as effective nano-heaters in a matrix causing the order(More)
A light-induced Soret effect accompanied by photoinduced adsorption of pigment nanoparticles is described in organic solvents. We report an unexpected inversion of the nanoparticle flux which is directed along the temperarture gradient at short exposures to the light and switches against the gradient at longer exposures. This change of flux direction is due(More)