Yseult Francoise Brun

Learn More
A flexible approach to response surface modeling for the study of the joint action of three active anticancer agents is used to model a complex pattern of synergism, additivity and antagonism in an in vitro cell growth assay. The method for determining a useful nonlinear response surface model depends upon a series of steps using appropriate scaling of drug(More)
BACKGROUND Time-course and concentration-effect experiments with multiple time-points and drug concentrations provide far more valuable information than experiments with just two design-points (treated vs. control), as commonly performed in most microarray studies. Analysis of the data from such complex experiments, however, remains a challenge. MATERIALS(More)
Chronic granulomatous disease (CGD) is an inherited disorder of the NADPH oxidase characterized by recurrent life-threatening bacterial and fungal infections. We characterized the effects of single and combination antifungal therapy on survival, histopathology, and laboratory markers of fungal burden in experimental aspergillosis in the p47phox-/- knockout(More)
Response surface methods for the study of multiple-agent interaction allow one to model all of the information present in full concentration-effect data sets and to visualize and quantify local regions of synergy, additivity, and antagonism. In randomized wells of 96-well plates, Aspergillus fumigatus was exposed to various combinations of amphotericin B,(More)
Our group recently developed a response-surface modeling paradigm (White et al: Curr Drug Metab 2, 399-409, 2003) and tested its application to both mixtures of anticancer agents and antifungals. This new model is a Hill-type equation, with the slope and potency parameters being functions of the normalized drug ratios, using polynomial expressions. Response(More)
  • 1