Yousun Kang

Learn More
We have developed a new framework for scale invariant texture analysis using multi-scale local autocorrelation features. The multi-scale features are made of concatenated feature vectors of different scales, which are calculated from higher-order local autocorrelation functions. To classify different types of textures among the given test images, a linear(More)
SUMMARY As a representative of the linear discriminant analysis, the Fisher method is most widely used in practice and it is very effective in two-class classification. However, when it is expanded to a multi-class classification problem, the precision of its discrimination may become worse. A main reason is an occurrence of overlapped distributions on the(More)
As the representative of the linear discriminant analysis, the Fisher method is most widely used in practice and it is very effective in two-class classification. However, when it is expanded to multi-class classification problem, the precision of its discrimination may become worse. One of the main reasons is an Occurence of overlapped distributions on a(More)
—Texton is a representative dense visual word and it has proven its effectiveness in categorizing materials as well as generic object classes. Despite its success and popularity, no prior work has tackled the problem of its scale optimization for a given image data and associated object category. We propose scale-optimized textons to learn the best scale(More)
SUMMARY Scene-context plays an important role in scene analysis and object recognition. Among various sources of scene-context, we focus on scene-context scale, which means the effective scale of local context to classify an image pixel in a scene. This paper presents random forests based image categorization using the scene-context scale. The proposed(More)