Learn More
Nuclear pore complexes (NPCs) are the gateways connecting the nucleoplasm and cytoplasm. This structures are composed of over 30 different proteins and 60-125 MDa of mass depending on type of species. NPCs are bilateral pathways that selectively control the passage of macromolecules into and out of the nucleus. Molecules smaller than 40 kDa diffuse through(More)
The nuclear pore complex (NPC) is the gatekeeper of the nucleus, capable of actively discriminating between the active and inert cargo while accommodating a high rate of translocations. The biophysical mechanisms underlying transport, however, remain unclear due to the lack of information about biophysical factors playing role in transport. Based on(More)
Understanding the biomechanical properties and the effect of biomechanical force on epithelial cells is key to understanding how epithelial cells form uniquely shaped structures in two or three-dimensional space. Nevertheless, with the limitations and challenges posed by biological experiments at this scale, it becomes advantageous to use mathematical and(More)
Diffusion plays a key role in many biochemical reaction systems seen in nature. Scenarios where diffusion behavior is critical can be seen in the cell and subcellular compartments where molecular crowding limits the interaction between particles. We investigate the application of a computational method for modeling the diffusion of molecules and(More)
The nuclear pore complex (NPC) regulates molecular traffic across the nuclear envelope (NE). Selective transport happens on the order of milliseconds and the length scale of tens of nanometers; however, the transport mechanism remains elusive. Central to the transport process is the hydrophobic interactions between karyopherins (kaps) and Phe-Gly (FG)(More)
Integrins are cell-surface protein heterodimers that coordinate cellular responses to mech-anochemical cues from the extracellular matrix (ECM) and stimulate the assembly of small adhesion complexes, which are the initial sites of cell-ECM adhesion. Clustering of inte-grins is known to mediate signaling through a variety of signal transduction pathways.(More)
Many physiological processes such as cell division, endocytosis and exocytosis cause severe local curvature of the cell membrane. Local curvature has been shown experimentally to modulate numerous mechanosensitive (MS) ion channels. In order to quantify the effects of local curvature we introduced a coarse grain representative volume element for the(More)
Design, modeling, manufacturing and experimental analysis of a six degree freedom robot, suitable for industrial applications, has been described in this paper. The robot was designed on the assumption that, each joint has an independent DC motor actuator, with gear reduction and measuring sensor for angular joint position. Mechanical design of the robot(More)
Recent experimental and clinical studies have demonstrated that several pulsed laser systems are also suitable for stapedotomy. The aim of the study was to investigate morphological and functional inner ear changes after irradiating the basal turn of the guinea pig cochlea with two pulsed laser systems of different wavelengths. The Er:YSGG (lambda=2.78 mcm)(More)
Mechanosensitive (MS) channels are ubiquitous molecular force sensors that respond to a number of different mechanical stimuli including tensile, compressive and shear stress. MS channels are also proposed to be molecular curvature sensors gating in response to bending in their local environment. One of the main mechanisms to functionally study these(More)