Youri Timsit

Learn More
Groove-backbone interaction is a natural and biologically relevant mechanism for the specific assembly of B-DNA double helices. Crystal engineering and crystal packing analysis of oligonucleotides of different sizes and sequences reveal that the sequence-dependent self-fitting of B-DNA helices is a dominant constraint for their ordered assembly. It can(More)
the crystal packing of the B-DNA dodecamer d(ACCG-GCGCCACA).d(TGTGGCGCCGGT) is characterized by the reciprocal fit of double helices with specific base-backbone interactions in the major groove. Cooling the crystals below -10 degrees C stabilizes a new conformational state with a long-range sequence-dependent one-step shift in the major-groove base pairing.(More)
DNA self-fitting is revealed by the study of intermolecular contacts found in the crystal packing of a dodecamer where the helices are locked together by a reciprocal groove-backbone interaction and form a crossed structure. It is proposed that it could be a model for DNA-DNA interaction in several biological processes such as the node of supercoiled DNA(More)
X-ray structure analysis of oligonucleotides shows that self-fitting of B-DNA molecules by groove-backbone interaction can trigger modification of the secondary structure of the double helix in a sequence-dependent manner, leading to a "pre-melted" transition state. This work reveals that some sequences respond to the DNA-DNA intermolecular interactions by(More)
Although during the past decade research has shown the functional importance of disorder in proteins, many of the structural and dynamics properties of intrinsically unstructured proteins (IUPs) remain to be elucidated. This review is focused on the role of the extensions of the ribosomal proteins in the early steps of the assembly of the eubacterial 50 S(More)
The target sequence of the restriction enzyme NarI (GGCGCC) is a hot spot for the -2 frameshift mutagenesis (GGCGCC----GGCC) induced by the chemical carcinogens such as N-2-acetyl-aminofluorene. Of the guanine residues, all of which show equal reactivity towards the carcinogen, only binding to the 3'-most proximal guanine within the NarI site is able to(More)
The accuracy of DNA replication results from both the intrinsic DNA polymerase fidelity and the DNA sequence. Although the recent structural studies on polymerases have brought new insights on polymerase fidelity, the role of DNA sequence and structure is less well understood. Here, the analysis of the crystal structures of hotspots for polymerase slippage(More)
The assembly of DNA duplexes into higher-order structures plays a major role in many vital cellular functions such as recombination, chromatin packaging and gene regulation. However, little is currently known about the molecular structure and stability of direct DNA-DNA interactions that are required for such functions. In nature, DNA helices minimize(More)
The close approach of DNA segments participates in many biological functions including DNA condensation and DNA processing. Previous crystallographic studies have shown that B-DNA self-fitting by mutual groove-backbone interaction produces right-handed DNA crossovers. These structures have opened new perspectives on the role of close DNA-DNA interactions in(More)