Learn More
Gene expression data from microarrays are being applied to predict preclinical and clinical endpoints, but the reliability of these predictions has not been established. In the MAQC-II project, 36 independent teams analyzed six microarray data sets to generate predictive models for classifying a sample with respect to one of 13 endpoints indicative of lung(More)
Due to the high cost and low reproducibility of many microarray experiments, it is not surprising to find a limited number of patient samples in each study, and very few common identified marker genes among different studies involving patients with the same disease. Therefore, it is of great interest and challenge to merge data sets from multiple studies to(More)
The concordance of RNA-sequencing (RNA-seq) with microarrays for genome-wide analysis of differential gene expression has not been rigorously assessed using a range of chemical treatment conditions. Here we use a comprehensive study design to generate Illumina RNA-seq and Affymetrix microarray data from the same liver samples of rats exposed in triplicate(More)
UNLABELLED Numerous methods are available to compare results of multiple microarray studies. One of the simplest but most effective of these procedures is to examine the overlap of resulting gene lists in a Venn diagram. Venn diagrams are graphical ways of representing interactions among sets to display information that can be read easily. Here we propose a(More)
In this paper, we propose a new clustering algorithm called <i>Fast Genetic K-means Algorithm (FGKA)</i>. FGKA is inspired by the Genetic K-means Algorithm (GKA) proposed by Krishna and Murty in 1999 but features several improvements over GKA. Our experiments indicate that, while K-means algorithm might converge to a local optimum, both FGKA and GKA always(More)
The Russian wheat aphid, Diuraphis noxia (Mordvilko) (Homoptera: Aphididae), is a major pest of bread wheat, Triticum aestivum L. (em Thell), in most wheat-growing areas worldwide. Aphid-resistant cultivars are used to combat this pest, but very little is known about the molecular basis of resistance. In this study, differential gene expression in D. noxia(More)
Protein structure prediction (PSP) has important applications in different fields, such as drug design, disease prediction, and so on. In protein structure prediction, there are two important issues. The first one is the design of the structure model and the second one is the design of the optimization technology. Because of the complexity of the realistic(More)
Several classification and feature selection methods have been studied for the identification of differentially expressed genes in microarray data. Classification methods such as SVM, RBF Neural Nets, MLP Neural Nets, Bayesian, Decision Tree and Random Forrest methods have been used in recent studies. The accuracy of these methods has been calculated with(More)
The increasing availability of large-scale protein-protein interaction data has made it possible to understand the basic components and organization of cell machinery from the network level. The arising challenge is how to analyze such complex interacting data to reveal the principles of cellular organization, processes and functions. Many studies have(More)
In recent years, clustering algorithms have been effectively applied in molecular biology for gene expression data analysis. With the help of clustering algorithms such as K-means, hierarchical clustering, SOM, etc, genes are partitioned into groups based on the similarity between their expression profiles. In this way, functionally related genes are(More)