Youngmi Yoon

Learn More
Since the genome project in 1990s, a number of studies associated with genes have been conducted and researchers have confirmed that genes are involved in disease. For this reason, the identification of the relationships between diseases and genes is important in biology. We propose a method called LGscore, which identifies disease-related genes using(More)
MOTIVATION Diagnosis and prognosis of cancer and understanding oncogenesis within the context of biological pathways is one of the most important research areas in bioinformatics. Recently, there have been several attempts to integrate interactome and transcriptome data to identify subnetworks that provide limited interpretations of known and candidate(More)
Microarray experiments generate quantitative expression measurements for thousands of genes simultaneously, which is useful for phenotype classification of many diseases. Our proposed phenotype classifier is an ensemble method with k-topscoring decision rules. Each rule involves a number of genes, a rank comparison relation among them, and a class label.(More)
The growing number and variety of genetic network datasets increases the feasibility of understanding how drugs and diseases are associated at the molecular level. Properly selected features of the network representations of existing drug-disease associations can be used to infer novel indications of existing drugs. To find new drug-disease associations, we(More)
The ability to provide thousands of gene expression values simultaneously makes microarray data very useful for phenotype classification. A major constraint in phenotype classification is that the number of genes greatly exceeds the number of samples. We overcame this constraint in two ways; we increased the number of samples by integrating independently(More)
Since microarray data acquire tens of thousands of gene expression values simultaneously, they could be very useful in identifying the phenotypes of diseases. However, the results of analyzing several microarray datasets which were independently carried out with the same biological objectives, could turn out to be different. One of the main reasons is(More)
Classification analysis of microarray data is widely used to reveal biological features and to diagnose various diseases, including cancers. Most existing approaches improve the performance of learning models by removing most irrelevant and redundant genes from the data. They select the marker genes which are expressed differently in normal and tumor(More)
Detecting protein complexes is one of essential and fundamental tasks in understanding various biological functions or processes. Therefore, precise identification of protein complexes is indispensible. For more precise detection of protein complexes, we propose a novel data structure which employs bottleneck proteins as partitioning points for detecting(More)
There has been much active research in bioinformatics to support our understanding of oncogenesis and tumor progression. Most research relies on mRNA gene expression data to identify marker genes or cancer specific gene networks. However, considering that proteins are functional molecules that carry out the biological tasks of genes, they can be direct(More)