Learn More
Due to the large number of putative microRNA gene targets predicted by sequence-alignment databases and the relative low accuracy of such predictions which are conducted independently of biological context by design, systematic experimental identification and validation of every functional microRNA target is currently challenging. Consequently, biological(More)
ECgene provides annotation for gene structure, function and expression, taking alternative splicing events into consideration. The gene-modeling algorithm combines the genome-based expressed sequence tag (EST) clustering and graph-theoretic transcript assembly procedures. The website provides several viewers and applications that have many unique features(More)
—This paper proposes the design of the software Universal Middleware Bridge (UMB) that can be used to solve seamless interoperability problems caused by the heterogeneity of several kinds of home network middleware. We verified that the proposed UMB dynamically maps physical devise in all different middleware domains into virtually abstracted devices in the(More)
ECgene (http://genome.ewha.ac.kr/ECgene) was developed to provide functional annotation for alternatively spliced genes. The applications encompass the genome-based transcript modeling for alternative splicing (AS), domain analysis with Gene Ontology (GO) annotation and expression analysis based on the EST and SAGE data. We have expanded the ECgene's AS(More)
Characterizing the biomolecular systems' properties underpinning prognosis signatures derived from gene expression profiles remains a key clinical and biological challenge. In breast cancer, while different "poor-prognosis" sets of genes have predicted patient survival outcome equally well in independent cohorts, these prognostic signatures have(More)
OBJECTIVE Thousands of complex-disease single-nucleotide polymorphisms (SNPs) have been discovered in genome-wide association studies (GWAS). However, these intragenic SNPs have not been collectively mined to unveil the genetic architecture between complex clinical traits. The authors hypothesize that biological annotations of host genes of trait-associated(More)
DNA variants that affect alternative splicing and the relative quantities of different gene transcripts have been shown to be risk alleles for some Mendelian diseases. However, for complex traits characterized by a low odds ratio for any single contributing variant, very few studies have investigated the contribution of splicing variants. The overarching(More)