Young-rok Cha

  • Citations Per Year
Learn More
Query result clustering has attracted considerable attention as a means of providing users with a concise overview of results. However, little research effort has been devoted to organizing the query results for entities which refer to real-world concepts, e.g., people, products, and locations. Entity-level result clustering is more challenging because(More)
This paper studies named entity translation and proposes “selective temporality” as a new feature, as using temporal features may be harmful for translating “atemporal” entities. Our key contribution is building an automatic classifier to distinguish temporal and atemporal entities then align them in separate procedures to boost translation accuracy by 6.1%.
This paper studies the problem of mining named entity translations by aligning comparable corpora. Current state-of-the-art approaches mine a translation pair by aligning an entity graph in one language to another based on node similarity or propagated similarity of related entities. However, they, building on the assumption of “symmetry”,(More)
  • 1