Young Tae Kim

Learn More
We present the first in vivo cross-sectional conductivity image of the human leg with 1.7 mm pixel size using the magnetic resonance electrical impedance tomography (MREIT) technique. After a review of its experimental protocol by an Institutional Review Board (IRB), we performed MREIT imaging experiments of four human subjects using a 3 T MRI scanner.(More)
Latest experimental results in magnetic resonance electrical impedance tomography (MREIT) demonstrated high-resolution in vivo conductivity imaging of animal and human subjects using imaging currents of 5 to 9 mA. Externally injected imaging currents induce magnetic flux density distributions, which are affected by a conductivity distribution. Since we(More)
Magnetic resonance electrical impedance tomography (MREIT) aims at producing high-resolution cross-sectional conductivity images of an electrically conducting object such as the human body. Following numerous phantom imaging experiments, the most recent study demonstrated successful conductivity image reconstructions of postmortem canine brains using a 3 T(More)
Magnetic resonance electrical impedance tomography (MREIT) has the potential to provide conductivity images with high spatial resolution and accuracy. Recent studies using various conductivity phantoms showed that the spatial resolution could be similar to that of conventional MR images as long as enough current is injected. Before we try in vivo animal(More)
The aim of the current study was to evaluate the protein expression involved in the progression from dysplasia to invasive esophageal squamous cell carcinomas and to analyze the prognostic value of markers. Immunohistochemistry was performed for cell cycle regulators [p53, p21, p27, p16, cyclin D1, Rb], apoptosis-related proteins [Fas, Fas-L, FADD, TRAIL,(More)
Magnetic resonance electrical impedance tomography (MREIT) aims to produce high-resolution cross-sectional images of conductivity distribution inside the human body. Injected current into an imaging object induces a distribution of internal magnetic flux density, which is measured by using an MRI scanner. We can reconstruct a conductivity image based on its(More)
Magnetic resonance electrical impedance tomography (MREIT) is a new bio-imaging modality providing cross-sectional conductivity images from measurements of internal magnetic flux densities produced by externally injected currents. Recent experimental results of postmortem and in vivo imaging of the canine brain demonstrated its feasibility by showing(More)
Cross-sectional conductivity images of lower extremities were reconstructed using Magnetic Resonance Electrical Impedance Tomography (MREIT) techniques. Carbon-hydrogel electrodes were adopted for postmortem swine and in vivo human imaging experiments. Due to their large surface areas and good contacts on the skin, we could inject as much as 10 mA into the(More)
BACKGROUND/AIMS This study aimed to investigate the effect of renal function on bone mineral density (BMD) and arterial stiffness in postmenopausal women. METHODS This is a retrospective cross-sectional study. We studied 252 postmenopausal women who visited a health promotion center for a medical checkup. The estimated glomerular filtration rate (eGFR)(More)
Magnetic Resonance Electrical Impedance Tomography (MREIT) aims to produce cross-sectional images of a conductivity distribution inside the human body with a spatial resolution of a few millimeters. Injecting currents into an imaging object at different directions, we measure induced internal magnetic flux densities using an MRI scanner. Conductivity images(More)