Learn More
Hepatitis C virus (HCV) is a major human pathogen causing mild to severe liver disease worldwide. This positive strand RNA virus is remarkably efficient at establishing chronic infections. Although a high rate of genetic variability may facilitate viral escape and persistence in the face of Ag-specific immune responses, HCV may also encode proteins that(More)
Macrophages, found in circulating blood as well as integrated into several tissues and organs throughout the body, represent an important first line of defense against disease and a necessary component of healthy tissue homeostasis. Additionally, macrophages that arise from the differentiation of monocytes recruited from the blood to inflamed tissues play a(More)
Complement proteins are involved in early innate immune responses against pathogens and play a role in clearing circulating viral Ags from the blood of infected hosts. We have previously demonstrated that hepatitis C virus (HCV) core, the first protein to be expressed and circulating in the blood of infected individuals, inhibited human T cell proliferative(More)
Complement plays a pivotal role in the regulation of innate and adaptive immunity. It has been shown that the binding of C1q, a natural ligand of gC1qR, on T cells inhibits their proliferation. Here, we demonstrate that direct binding of the hepatitis C virus (HCV) core to gC1qR on T cells leads to impaired Lck/Akt activation and T-cell function. The HCV(More)
gC1qR, a complement receptor for C1q, plays a pivotal role in the regulation of inflammatory and antiviral T cell responses. Several pathogens, including hepatitis C virus, exploit gC1qR-dependent regulatory pathways to manipulate host immunity. However, the molecular mechanism(s) of gC1qR signaling involved in regulating inflammatory responses remains(More)
Cytotoxic T lymphocytes (CTL) recognize short antigenic peptides associated with cell surface class I major histocompatibility complex (MHC) molecules. This association presumably occurs between newly synthesized class I MHC molecules and peptide fragments in a pre-Golgi compartment. Little is known about the factors that regulate the formation of these(More)
Class I major histocompatibility complex (MHC) restricted T lymphocytes preferentially recognize fragments of polypeptides processed through a nonendosomal presentation pathway. At present the intracellular compartment(s) in which polypeptide fragmentation occurs and factors which influence the formation of an antigenic epitope are not well understood. To(More)
Respiratory virus infections, such as influenza, typically induce a robust type I (pro-inflammatory cytokine) immune response, however, the production of type 2 cytokines has been observed. Type 2 cytokine production during respiratory virus infection is linked to asthma exacerbation; however, type 2 cytokines may also be tissue protective. Interleukin(More)
BACKGROUND Hepatitis C Virus (HCV) is remarkably efficient at establishing persistent infection and is associated with the development of chronic liver disease. Impaired T cell responses facilitate and maintain persistent HCV infection. Importantly, CD4(+) regulatory T cells (Tregs) act by dampening antiviral T cell responses in HCV infection. The mechanism(More)
Immune-mediated hepatic damage has been demonstrated in the pathogenesis of hepatitis C virus (HCV) and other hepatotrophic infections. Fas/Fas ligand (FasL) interaction plays a critical role in immune-mediated hepatic damage. To understand the molecular mechanism(s) of FasL-mediated liver inflammation, we examined the effect of CD4(+) T cells expressing(More)