Young J. Kim

Learn More
We present an interactive and accurate collision detection algorithm for deformable, polygonal objects based on the streaming computational model. Our algorithm can detect all possible pairwise primitive-level intersections between two severely deforming models at highly interactive rates. In our streaming computational model, we consider a set of axis(More)
Figure 1: We present improved subdivision and isosurface reconstruction algorithms for polygonizing implicit surfaces and performing accurate geometric operations. We highlight its performance on the “gun model” of the Bradley Fighting Vehicle which is generated using 8 Boolean operations. The leftmost and center left images show an iso-surface(More)
We cull collisions between very large numbers of moving bodies using graphics processing units (GPUs). To perform massively parallel sweep-and-prune (SaP), we mitigate the great density of intervals along the axis of sweep by using principal component analysis to choose the best sweep direction, together with spatial subdivisions to further reduce the(More)
This paper presents an effective approach to generate a set of small textures from an input texture that can be tiled together to synthesize large textures. Such a small set can be useful in texturing any large area realistically and efficiently while consuming only a small amount of texture memory. Our approach is advantageous in its ability to generate a(More)
A study was conducted in the Hong Kong with the aim of deriving an algorithm for the retrieval of suspended sediment (SS) and sea surface salinity (SSS) concentrations from Aqua/MODIS level 1B reflectance data with 250m and 500m spatial resolutions. ‘In-situ’ measurements of SS and SSS were also compared with coincident MODIS spectral reflectance(More)
We present a novel algorithm to perform continuous collision detection for articulated models. Given two discrete configurations of the links of an articulated model, we use an "arbitrary in-between motion" to interpolate its motion between two successive time steps and check the resulting trajectory for collisions. Our approach uses a three-stage pipeline:(More)
We present a novel and fast algorithm to compute penetration depth (PD) between two polyhedral models for physically-based animation. Given two overlapping polyhedra, it computes the minimal translation distance to separate them using a combination of object-space and image-space techniques. The algorithm computes pairwise Minkowski sums of decomposed(More)
We present an efficient algorithm to approximate the swept volume (SV) of a complex polyhedron along a given trajectory. Given the boundary description of the polyhedron and a path specified as a parametric curve, our algorithm enumerates a superset of the boundary surfaces of SV. It consists of ruled and developable surface primitives, and the SV(More)
We present a novel six-degree-of-freedom haptic rendering algorithm using incremental and localized contact computations. It uses an incremental approach for contact and force computations and takes advantage of spatial and temporal coherence between successive frames. As part of a preprocess, we decompose the surface of each polyhedron into convex pieces(More)