Learn More
A widely accepted model for catabolite repression posits that phospho-IIAGlc of the bacterial phosphotransferase system activates adenylyl cyclase (AC) activity. For many years, attempts to observe such regulatory properties of AC in vitro have been unsuccessful. To further study the regulation, AC was produced fused to the transmembrane segments of the(More)
Similar to decapping of eukaryotic mRNAs, the RppH-catalyzed conversion of 5'-terminal triphosphate to monophosphate has recently been identified as the rate-limiting step for the degradation of a subset of mRNAs in Escherichia coli. However, the regulation of RppH pyrophosphohydrolase activity is not well understood. Because the overexpression of RppH(More)
The aim of this study was to evaluate MR imaging findings of the associated findings in surrounding tissues of the extra-articular soft tissue ganglion cysts around the knee. We retrospectively reviewed MR images of 30 patients who had surgically confirmed extra-articular soft tissue ganglion cysts around the knee with focus on the associated findings in(More)
In addition to the phosphoenolpyruvate:sugar phosphotransferase system (sugar PTS), most proteobacteria possess a paralogous system (nitrogen phosphotransferase system, PTS(Ntr)). The first proteins in both pathways are enzymes (enzyme I(sugar) and enzyme I(Ntr)) that can be autophosphorylated by phosphoenolpyruvate. The most striking difference between(More)
In Escherichia coli, glucose-dependent transcriptional induction of genes encoding a variety of sugar-metabolizing enzymes and transport systems is mediated by the phosphorylation state-dependent interaction of membrane-bound enzyme IICB(Glc) (EIICB(Glc)) with the global repressor Mlc. Here we report the crystal structure of a tetrameric Mlc in a complex(More)
Expression of the Escherichia coli sdhCDAB operon encoding the succinate dehydrogenase complex is regulated in response to growth conditions, such as anaerobiosis and carbon sources. An anaerobic repression of sdhCDAB is known to be mediated by the ArcB/A two-component system and the global Fnr anaerobic regulator. While the cAMP receptor protein (CRP) and(More)
The bacterial phosphoenolpyruvate:sugar phosphotransferase system (PTS) is a multicomponent system that participates in a variety of physiological processes in addition to the phosphorylation-coupled transport of numerous sugars. In Escherichia coli and other enteric bacteria, enzyme IIA(Glc) (EIIA(Glc)) is known as the central processing unit of carbon(More)
The bacterial phosphoenolpyruvate:sugar phosphotransferase system (PTS) consists of two general energy-coupling proteins [enzyme I and histidine phosphocarrier protein (HPr)] and several sugar-specific enzyme IIs. Although, in addition to the phosphorylation-coupled transport of sugars, various regulatory roles of PTS components have been identified in(More)
To survive in a continuously changing environment, bacteria sense concentration gradients of attractants or repellents, and purposefully migrate until a more favourable habitat is encountered. While glucose is known as the most effective attractant, the flagellar biosynthesis and hence chemotactic motility has been known to be repressed by glucose in some(More)