Young H. Jeong

Learn More
Many studies have reported that an electromagnetic field can promote osteogenic differentiation of mesenchymal stem cells. However, experimental results have differed depending on the experimental and environmental conditions. Optimization of electromagnetic field conditions in a single, identified system can compensate for these differences. Here we(More)
Pretreatment using various types of biophysical stimuli could provide appropriate potential to cells during construction of the engineered tissue in vitro. We hypothesized that multiple combinations of these biophysical stimuli could enhance osteogenic differentiation in vitro and bone formation in vivo. Cyclic strain, an electromagnetic field, and(More)
Electrospun nanofibrous structures provide good performance to scaffolds in tissue engineering. We measured the local diffusion coefficients of 3-kDa FITC-dextran in line patterns of electrospun nanofibrous structures fabricated by the direct-write electrospinning (DWES) technique using the fluorescence recovery after photobleaching (FRAP) method. No(More)
One of the most challenging objectives of 3D cell culture is the development of scaffolding materials with outstanding biocompatibility and favorable mechanical strength. In this study, we fabricated a novel nanofibrous scaffold composed of fish collagen (FC) and polycaprolactone (PCL) blends by using the electrospinning method. Nanofibrous scaffolds were(More)
Due to the numerous advantages of nanofibers, there is a strong demand in various fields for nanofibrous structures fabricated by electrospinning. However, the process is currently beset by troublesome limitations with respect to geometric and morphological control of electrospun nanofibrous mats. This study presents a direct-write electrospinning process(More)
A number of studies on skin tissue regeneration and wound healing have been conducted. Electrospun nanofibers have numerous advantages for use in wound healing dressings. Here, we present an electrospinning method for alteration of the surface morphological properties of electrospun mats because most previous studies focused on the materials used or the(More)
An electromagnetic field is an effective stimulation tool because it promotes bone defect healing, albeit in an unknown way. Although electromagnetic fields are used for treatment after surgery, many patients prefer cell-based tissue regeneration procedures that do not require daily treatments. This study addressed the effects of an electromagnetic field on(More)
In cartilage tissue engineering, electromagnetic field (EMF) therapy has been reported to have a modest effect on promoting cartilage regeneration. However, these studies were conducted using different frequencies of EMF to stimulate chondrocytes. Thus, it is necessary to investigate the effect of EMF frequency on cartilage formation. In addition to the(More)
Endothelial cells (ECs) form a monolayer lining over the entire vascular wall and play an important role in maintaining vascular homeostasis and cancer metastasis. Loss of proper endothelial function can lead to vascular diseases. Therefore, the endothelial monolayer is particularly important in tissue regeneration and mimicking vascular tissue in vitro.(More)
The study of immune cell migration is important for understanding the immune system network, which is associated with the response to foreign cells. Neutrophils act against foreign cells before any other immune cell, and they must be able to change shape and squeeze through narrow spaces in the extracellular matrix (ECM) during migration to sites of(More)