Learn More
In the present study, we examined the neuroprotective effects and mechanisms of implanted human umbilical cord-derived mesenchymal stem cells (hUC-MSCs) in ischemic stroke. hUC-MSCs were isolated from the endothelial/subendothelial layers of the human umbilical cord and cultured. Twenty days after the induction of in vitro neuronal differentiation, about(More)
Microglial cells become rapidly activated through interaction with pathogens, and their persistent activation is associated with the production and secretion of various pro-inflammatory genes, cytokines, and chemokines, which may initiate or amplify neurodegenerative diseases. Bromodomain and extraterminal domain (BET) proteins are a group of epigenetic(More)
Mesenchymal stem cells (MSCs) obtained from bone marrow (BM) are currently used as an alternative therapy in amyotrophic lateral sclerosis (ALS) patients. Selection of optimal passages of autologous BM-derived MSCs during long-term in vitro expansion is important for clinical trials in patients with ALS. We isolated and expanded MSCs from the BM of eight(More)
There is increasing evidence that estrogen influences electrical activity of neurons via stimulation of membrane receptors. Although the presence of intracellular estrogen receptors and their responsiveness in dorsal root ganglion (DRG) primary sensory neurons were reported, rapid electrical responses of estrogen in DRG neurons have not been reported yet.(More)
Non-competitive N-methyl-D-aspartate (NMDA) receptor antagonists such as dizocilpine (MK-801) produce schizophrenia-like psychosis in humans and induce the expression of heat shock protein 70 (HSP70) in rats. The present study examines the effects of antipsychotic drugs, haloperidol and risperidone, on the expression of HSP70 produced by MK-801 in rat C6(More)
The primary mechanisms of antidepressants are based on the monoamine depletion hypothesis. However, we do not yet know the full cascade of mechanisms responsible for the therapeutic effect of antidepressants. To identify the genes involved in the therapeutic mechanism of the selective serotonin reuptake inhibitor, fluoxetine, we used a cDNA microarray(More)
Microglia and macrophages play an important role in the innate and adaptive immune systems. Although the resident location of these cells is different, their functions during the polarization response due to various stimuli are very similar. The present study aimed to analyze differences in microglial and macrophage gene expression during inflammation.(More)
Naltrexone, an opioid receptor antagonist, has been approved for clinical use in the treatment of alcohol dependence. In the present study, we examined the underlying mechanisms of naltrexone by investigating the pharmacogenomic variations in the brain regions associated with alcohol consumption. A complementary DNA microarray analysis was used to profile(More)
In the brain, the stress system plays an important role in motivating continued alcohol use and relapse. The neuropeptide substance P and the neurokinin-1 receptor (NK1R) are involved in the stress response and drug reward systems. Recent findings have shown that the binding of ligands to NK1Rs decreases the self-administration of alcohol in mice. We(More)
The expression pattern of the repressor element-1 silencing transcription factor (REST) also known as the neuron-restrictive silencer factor (NRSF) and its truncated forms have been analyzed in the neuroblastoma cell lines, NS20Y and NIE115 and in NIH3T3 cells. The neuroblastoma cell lines express transcripts of REST/NRSF and its neuron-specific truncated(More)