Younes Zerouali

Learn More
Synchronizing movements with rhythmic inputs requires tight coupling of sensory and motor neural processes. Here, using a novel approach based on the recording of steady-state-evoked potentials (SS-EPs), we examine how distant brain areas supporting these processes coordinate their dynamics. The electroencephalogram was recorded while subjects listened to a(More)
The link between decrease in levels of attention and total sleep deprivation is well known but the respective contributions of slow wave sleep (SWS) and rapid eye movement sleep (REM) is still largely unknown. The aim of this study was to characterize the effects of sleep deprivation during the SWS phase (i.e., early night sleep) and the REM phase (i.e.,(More)
Sleep spindles are a hallmark of NREM sleep. They result from a widespread thalamo-cortical loop and involve synchronous cortical networks that are still poorly understood. We investigated whether brain activity during spindles can be characterized by specific patterns of functional connectivity among cortical generators. For that purpose, we developed a(More)
It is generally agreed that some features of a face, namely the eyes, are more salient than others as indexed by behavioral diagnosticity, gaze-fixation patterns and evoked-neural responses. However, because previous studies used unnatural stimuli, there is no evidence so far that the early encoding of a whole face in the human brain is based on the eyes or(More)
The purpose of this study is to develop and quantitatively assess whether fusion of EEG and MEG (MEEG) data within the maximum entropy on the mean (MEM) framework increases the spatial accuracy of source localization, by yielding better recovery of the spatial extent and propagation pathway of the underlying generators of inter-ictal epileptic discharges(More)
Failure to recognize insular cortex seizures has recently been identified as a cause of epilepsy surgeries targeting the temporal, parietal, or frontal lobe. Such failures are partly due to the fact that current noninvasive localization techniques fare poorly in recognizing insular epileptic foci. Our group recently demonstrated that magnetoencephalography(More)
Neural synchronization is a key mechanism to a wide variety of brain functions, such as cognition, perception, or memory. High temporal resolution achieved by EEG recordings allows the study of the dynamical properties of synchronous patterns of activity at a very fine temporal scale but with very low spatial resolution. Spatial resolution can be improved(More)
In this review, authors discuss the semiology and noninvasive investigations of insular epilepsy, an underrecognized type of epilepsy, which may mimic other focal epilepsies. In line with the various functions of the insula and its widespread network of connections, insular epilepsy may feature a variety of early ictal manifestations from somatosensory,(More)
The insula is a deep cortical structure sharing extensive synaptic connections with a variety of brain regions, including several frontal, temporal, and parietal structures. The identification of the insular connectivity network is obviously valuable for understanding a number of cognitive processes, but also for understanding epilepsy since insular(More)
  • 1