Youn Shic Kim

Learn More
Drought poses a serious threat to the sustainability of rice (Oryza sativa) yields in rain-fed agriculture. Here, we report the results of a functional genomics approach that identified a rice NAC (an acronym for NAM [No Apical Meristem], ATAF1-2, and CUC2 [Cup-Shaped Cotyledon]) domain gene, OsNAC10, which improved performance of transgenic rice plants(More)
Rice (Oryza sativa), a monocotyledonous plant that does not cold acclimate, has evolved differently from Arabidopsis (Arabidopsis thaliana), which cold acclimates. To understand the stress response of rice in comparison with that of Arabidopsis, we developed transgenic rice plants that constitutively expressed CBF3/DREB1A (CBF3) and ABF3, Arabidopsis genes(More)
Trehalose plays an important role in stress tolerance in plants. Trehalose-producing, transgenic rice (Oryza sativa) plants were generated by the introduction of a gene encoding a bifunctional fusion (TPSP) of the trehalose-6-phosphate (T-6-P) synthase (TPS) and T-6-P phosphatase (TPP) of Escherichia coli, under the control of the maize (Zea mays) ubiquitin(More)
Transcription factors with an APETELA2 (AP2) domain have been implicated in various cellular processes involved in plant development and stress responses. Of the 139 AP2 genes predicted in rice (Oryza sativa), we identified 42 genes in our current study that are induced by one or more stress conditions, including drought, high salinity, low temperature, and(More)
To increase insect resistance in transgenic rice plants, a synthetic truncated cry1Ac gene was linked to the rice rbcS promoter and its transit peptide sequence (tp) for chloroplast-targeted expression. Several transgenic lines were generated by the Agrobacterium-mediated transformation method and the expression levels of the transgene were compared with(More)
Drought conditions limit agricultural production by preventing crops from reaching their genetically predetermined maximum yields. Here, we present the results of field evaluations of rice overexpressing OsNAC9, a member of the rice NAC domain family. Root-specific (RCc3) and constitutive (GOS2) promoters were used to overexpress OsNAC9 and produced the(More)
There is currently a shortage of efficient promoters for stress-inducible gene expression, especially in monocotyledonous crops. Here, we report analysis of the rice Wsi18 promoter, a member of the group 3 Lea family, in transgenic rice plants. The abundance of Wsi18 mRNA increased in leaf tissues within 2 h of exposure to NaCl or abscisic acid (ABA) and(More)
There are few efficient promoters for use with stress-inducible gene expression in plants, and in particular for monocotyledonous crops. Here, we report the identification of six genes, Rab21, Wsi18, Lea3, Uge1, Dip1, and R1G1B that were induced by drought stress in rice microarray experiments. Gene promoters were linked to the gfp reporter and their(More)
Drought conditions are among the most serious challenges to crop production worldwide. Here, we report the results of field evaluations of transgenic rice plants overexpressing OsNAC5, under the control of either the root-specific (RCc3) or constitutive (GOS2) promoters. Field evaluations over three growing seasons revealed that the grain yield of the(More)
Novel constitutive gene promoters are essential components of crop biotechnology. Our analysis of five such promoters, APX, SCP1, PGD1, R1G1B, and EIF5, in transgenic rice plants is reported here. The five promoter regions were linked to the gfp reporter gene and transformed into rice. Using fluorescent microscopy and q-RT-PCR, promoter activities were(More)