Learn More
Reactive oxygen species (ROS) participate in cardioprotection of ischemic reperfusion (I/R) injury via preconditioning mechanisms. Mitochondrial ROS have been shown to play a key role in this process. Angiotensin II (Ang II) exhibits pharmacological preconditioning; however, the involvement of NAD(P)H oxidase, known as an ROS-generating enzyme responsive to(More)
Reactive oxygen species (ROS) are key mediators in signal transduction of angiotensin II (Ang II). However, roles of vascular mitochondria, a major intracellular ROS source, in response to Ang II stimuli have not been elucidated. This study aimed to examine the involvement of mitochondria-derived ROS in the signaling pathway and the vasoconstrictor(More)
Studies were performed to test the hypothesis that reactive oxygen species (ROS) and mitogen-activated protein kinase (MAPK) contribute to the pathogenesis of aldosterone/salt-induced renal injury. Rats were given 1% NaCl to drink and were treated with one of the following combinations for 6 weeks: vehicle (0.5% ethanol, SC, n=6); aldosterone (0.75(More)
This study was performed to examine whether there is an inappropriate regulation of intrarenal angiotensinogen in Dahl-salt sensitive rats (DS) fed a high salt diet (HS). Dahl salt-resistant rats (DR) and DS were maintained on HS (8% NaCl) or low salt diet (LS, 0.3% NaCl) for 4 weeks. Systolic blood pressure (SBP), measured by tail-cuff plethysmography, was(More)
In recent years, oxidative stress has been postulated to be an important factor in the pathogenesis and development of lifestyle-related diseases. In this study, we investigated the association between the derivatives of reactive oxygen metabolites (d-ROMs), as an index of products of reactive oxygen species (ROS), and biological antioxidant potential(More)
Treatment with cyclosporine A (CysA), a potent immunosuppressive agent, is associated with systemic and renal vasoconstriction, leading to hypertension. The present study was conducted to elucidate the contribution of angiotensin II (Ang II) to CysA-induced hypertension and reactive oxygen species (ROS) generation. CysA (30 mg/kg per day SC), given for 3(More)
We demonstrated recently that chronic administration of aldosterone to rats induces glomerular mesangial injury and activates mitogen-activated protein kinases including extracellular signal-regulated kinases 1/2 (ERK1/2). We also observed that the aldosterone-induced mesangial injury and ERK1/2 activation were prevented by treatment with a selective(More)
Recent studies have indicated that angiotensin II (Ang II) can stimulate oxidative stress. The present study was conducted to assess the contribution of oxygen radicals to hypertension and regional circulation during Ang II–induced hypertension. With radioactive microspheres, the responses of systemic and regional hemodynamics to the membranepermeable,(More)
OBJECTIVE Sympathetic nervous system activity in the myocardium is increased in patients with heart failure. However, the in vivo mechanisms responsible for beta-adrenoceptor-mediated cardiac hypertrophy or remodeling remain unclear. This study aimed to clarify the role of reactive oxygen species (ROS) in mitogen-activated protein (MAP) kinase activation(More)
Recent studies have suggested a role for aldosterone in the pathogenesis of renal injury. This study investigated the potential contributions of Rho-kinase and TGF-beta pathways to aldosterone-induced renal injury. Rats were uninephrectomized and then treated for 5 wk with 1% NaCl in a drinking solution and one of the following: Vehicle (2% ethanol,(More)