You-Xuan Zheng

  • Citations Per Year
Learn More
Based on 2,2′:6′,2′′-terpyridine ligands (L1), five terpyridine derivatives, namely 4′-carbazol-9-yl-2,2′:6′,2′′-terpyridine (L2), 4′-diphenylamino-2,2′:6′,2′′-terpyridine (L3), 4′-bis(4-tert-butylphenyl)amino-2,2′:6′,2′′-terpyridine (L4), 4′-[naphthalen-1-yl-(phenyl)amino]-2,2′:6′,2′′-terpyridine (L5),(More)
Iridium III -based phosphorescent complexes are particularly important and have been intensively studied [ 1 ] because of their high phosphorescent effi ciencies and relatively short lifetimes. For the realization of full-color displays and the creation of white organic light-emitting diodes (WOLEDs), many interesting Ir III complexes emitting in green(More)
Five bis-cyclometalated iridium complexes with tifluoromethyl-substituted 2-phenylpyridine (ppy) at different positions of its phenyl group as the main ligands and tetraphenylimidodiphosphinate (tpip) as the ancillary ligand, 2-6 (1 is a trifluoromethyl-free complex), were prepared, and their X-ray crystallography, photoluminescence, and electrochemistry(More)
Three bis-cyclometalated iridium complexes ((TPP)2Ir(acac), (TPP)2Ir(tpip) and (TPP)2Ir(pic)) with 2-(2-trifluoromethyl)pyrimidine-pyridine (TPP) as the main ligand, 2,4-pentanedionate (acac), tetraphenylimidodiphosphinate (tpip) and picolinate (pic) as the ancillary ligands, respectively, were prepared. Their photoluminescence and electrochemistry(More)
On account of the broad utilities of organophosphorus compounds, the development of highly efficient and concise phosphination methods is significantly important and urgent. Herein, we disclose a novel method for the synthesis of phosphorylated heterocycles: versatile intermediate propargylamines serving as a new type of radical acceptors incorporated in(More)
With 2-(2,4-difluorophenyl)pyridine (dfppy) as the first cyclometalated ligand and different monoanionic N-heterocyclic carbenes (NHCs) as the second cyclometalated ligands, 16 blue or greenish-blue neutral iridium(III) phosphorescent complexes, (dfppy)2Ir(NHC), were synthesized efficiently. The obtained Ir(III) complexes display typical phosphorescence of(More)
Using the enantiomeric bis-bidentate bridging ligands (+)/(-)-2,5-bis(4,5-pinene-2-pyridyl)pyrazine (L(S)/L(R)) and depending on the ratio control of reactants, two mono- and dinuclear Eu(III)-based enantiomeric pairs with the formulae Eu(dbm)(3)L(R/S)·2H(2)O (L(R) in R-1, L(S) in S-1 and dbm = dibenzoylmethanato) and Eu(2)(dbm)(6)L(R/S)·H(2)O (L(R) in R-2(More)
Two novel iridium(iii) complexes, Ir(tfmpiq)2(acac) (tfmpiq = 1-(2,6-bis(trifluoromethyl)pyridin-4-yl)isoquinoline, acac = acetylacetone) and Ir(tfmpqz)2(acac) (tfmpqz = 4-(2,6-bis(trifluoromethyl)pyridin-4-yl)quinazoline), were synthesized and thoroughly investigated. Both complexes emit orange-red photoluminescence with high quantum yields(More)
Two new platinum(ii) cyclometalated complexes with 2-(4-trifluoromethyl)phenylpyridine (4-tfmppy) as the main ligand and tetraphenylimidodiphosphinate (tpip) (Pt-tpip) and tetra(4-fluorophenyl)imidodiphosphinate (ftpip) (Pt-ftpip) as ancillary ligands were developed. Both complexes were green phosphors with photoluminescence quantum efficiency yields of(More)
Three N,N-bidentate ligands, 5,5'-dibromo-2,2-bipyridine (L1) and two carbazole containing ligands of 5-bromo-5'-carbazolyl-2,2-bipyridine (L2), 5,5'-dicarbazolyl-2,2'-bipyridine (L3), and their corresponding rhenium Re(CO)3Cl(L) complexes (ReL1-ReL3) have been successfully synthesized and characterized by elemental analysis, 1H NMR and IR spectra. Their(More)