Learn More
Decreased mitochondrial function plays a pivotal role in the pathogenesis of type 2 diabetes mellitus (T2DM). Recently, it was reported that mitochondrial DNA (mtDNA) haplogroups confer genetic susceptibility to T2DM in Koreans and Japanese. Particularly, mtDNA haplogroup N9a is associated with a decreased risk of T2DM, whereas haplogroups D5 and F are(More)
Endocrine therapy is effective in approximately one-third of all breast cancers and up to 80% of tumors that express both estrogen and progesterone receptors. Despite the low toxicity, good overall response rates, and additional benefits associated with its partial agonist activity, most Tamoxifen-responsive breast cancers acquire resistance. The(More)
Rad9-Rad1-Hus1 (9-1-1) is a checkpoint protein complex playing roles in DNA damage sensing, cell cycle arrest, DNA repair or apoptosis. Human 8-oxoguanine DNA glycosylase (hOGG1) is the major DNA glycosylase responsible for repairing a specific aberrantly oxidized nucleotide, 7,8-dihydro-8-oxoguanine (8-oxoG). In this study, we identified a novel(More)
Ribosomal protein S3 (rpS3) is a multifunctional protein involved in translation, DNA repair, and apoptosis. The relationship between rpS3 and cyclin-dependent kinases (Cdks) involved in cell cycle regulation is not yet known. Here, we show that rpS3 is phosphorylated by Cdk1 in G2/M phase. Co-immunoprecipitation and GST pull-down assays revealed that Cdk1(More)
Free fatty acid-induced pancreatic β-cell dysfunction plays a key role in the pathogenesis of type 2 diabetes. We conducted gene expression microarray analysis to comprehensively investigate the transcription machinery of palmitate-regulated genes in pancreatic β-cells in vitro. In particular, mouse pancreatic βTC3 cells were treated with palmitate in the(More)
PURPOSE We developed a bimolecular fluorescence complementation (BiFC) strategy using Dronpa, a new fluorescent protein with reversible photoswitching activity and fast responsibility to light, to monitor protein-protein interactions in cells. PROCEDURES Dronpa was split at residue Glu164 in order to generate two Dronpa fragments [Dronpa N-terminal: DN(More)
The effect of human MutY homolog (hMYH) on the activation of checkpoint proteins in response to hydroxyurea (HU) and ultraviolet (UV) treatment was investigated in hMYH-disrupted HEK293 cells. hMYH-disrupted cells decreased the phosphorylation of Chk1 upon HU or UV treatment and increased the phosphorylation of Cdk2 and the amount of Cdc25A, but not Cdc25C.(More)
  • 1