Learn More
We investigate the influence of a dipole interaction with a classical radiation field on a qubit during a continuous change of a control parameter. In particular, we explore the non-adiabatic transitions that occur when the qubit is swept with linear speed through resonances with the time-dependent interaction. Two classic problems come together in this(More)
Under the illumination of intense off-resonant laser light, the electronic states of semiconductors are strongly modified, or dressed, by the oscillating electric field. We present a framework using linear combination of atomic orbital band theory to calculate the dressed band structure and optical absorption spectrum of covalent semiconductors in an(More)
We calculate the exact Landau-Zener transition probabilities for a qubit with an arbitrary linear coupling to a bath at zero temperature. The final quantum state exhibits a peculiar entanglement between the qubit and the bath. In the special case of diagonal coupling, the bath does not influence the transition probability, whatever the speed of the(More)
Electronic and phonon coherence are usually measured in different ways because their time-scales are very different. In this paper we simultaneously measure the electronic and phonon coherence using the interference of the electron-phonon correlated states induced by two phase-locked optical pulses. Interferometric visibility showed that electronic(More)
We study Landau-Zener transitions in a qubit coupled to a bath at zero temperature. A general formula that is applicable to models with a nondegenerate ground state is derived. We calculate exact transition probabilities for a qubit coupled to either a bosonic or a spin bath. The nature of the baths and the qubit-bath coupling is reflected in the transition(More)
  • 1