Learn More
Natural and genetically modified oncolytic viruses have been systematically tested as anticancer therapeutics. Among this group, conditionally replicative adenoviruses have been developed for a broad range of tumors with a rapid transition to clinical settings. Unfortunately, clinical trials have shown limited antitumor efficacy partly due to insufficient(More)
Adenovirus (Ad) serotype 5 (Ad5) continues to be the predominant vector used for cancer gene therapy. However, many tumor types are reported to be relatively refractory to Ad5 infection because of low surface expression of the native Ad5 receptor, CAR. The observation that many tumor cells are CAR deficient has necessitated the development of(More)
Cellular resistance to chemotherapeutic agents is attributable to several mechanisms, including alteration of topoisomerase IIalpha (topo IIalpha) gene expression. Etoposide-resistant MDA-VP human breast cancer cells express lower amounts of enzymatically active and drug-sensitive topo IIalpha than do MDA parent cells, suggesting that the low level of topo(More)
The development of novel therapeutic strategies is imperative for the treatment of advanced cancers like ovarian cancer and glioma, which are resistant to most traditional treatment modalities. In this regard, adenoviral (Ad) cancer gene therapy is a promising approach. However, the gene delivery efficiency of human serotype 5 recombinant adenoviruses (Ad5)(More)
Most viruses exploit a variety of host cellular proteins as primary cellular attachment receptors in the context of successful execution of infection. Furthermore, many viral agents have evolved precise mechanisms to subvert host immune recognition to achieve persistence. Herein we present data indicating that adenovirus (Ad) serotype 3 utilizes CD80 (B7.1)(More)
Adenovirus serotype 5 (Ad5) has been used for gene therapy with limited success because of insufficient infectivity in cells with low expression of the primary receptor, the coxsackie and adenovirus receptor (CAR). To enhance infectivity in tissues with low CAR expression, tropism expansion is required via non-CAR pathways. Serotype 3 Dearing reovirus(More)
The efficiency of cancer gene therapy with recombinant adenoviruses based on serotype 5 (Ad5) has been limited partly because of variable, and often low, expression by human primary cancer cells of the primary cellular-receptor which recognizes the knob domain of the fiber protein, the coxsackie and adenovirus receptor (CAR). As a means of circumventing CAR(More)
Adenovirus (Ad)-mediated transduction of dendritic cells (DC) is inefficient because of the lack of the primary Ad receptor, CAR. DC infection with Ad targeted to the CD40 results in increased gene transfer. The current report describes further development of the CD40-targeting approach using an adapter molecule that bridges the fiber of the Ad5 to CD40 on(More)
Successful adenoviral (Ad) vector-mediated strategies for cancer gene therapy mandate gene-delivery systems that are capable of achieving efficient gene delivery in vivo. In many cancer types, in vivo gene-transfer efficiency remains limited due to the low or highly variable expression of the primary Ad receptor, the coxsackie Ad receptor (CAR). In this(More)
Successful adenoviral (Ad) vector-mediated strategies for breast cancer gene therapy and virotherapy have heretofore been hindered by low transduction efficiency. This has recently been understood to result from a relative paucity of expression of the primary adenovirus receptor, coxsackie-adenovirus-receptor (CAR), on primary tumor cells. To further(More)