Yosuke Kanai

Learn More
A density functional theory approach is employed to investigate poly-3-hexylthiophene (P3HT) interfaced with both a semiconducting and metallic carbon nanotube (CNT). For the semiconducting CNT, a type-II heterojunction can form, making such an interface desirable as a photovoltaic heterojunction. In contrast, with the metallic CNT, substantial charge(More)
In the quest to harness solar energy for power generation, most efforts are centered around photoinduced generic charge separation, such as in photovoltaics, water splitting, other small-molecule activation, and biologically inspired photosynthetic systems. [1] In contrast, the direct collection of heat from sunlight has received much less diversified(More)
Germany for his theoretical work on transparent conducting oxides. Before he started at UIUC he was a Directorate Postdoctoral Researcher at Lawrence Livermore National Laboratory (2011-2013) working on a description of non-adiabatic electron-ion dynamics. His current research focus is on excited electronic states and their real-time dynamics in various(More)
Explicit integrators for real-time propagation of time-dependent Kohn-Sham equations are compared regarding their suitability for performing large-scale simulations. Four algorithms are implemented and assessed for both stability and accuracy within a plane-wave pseudopotential framework, employing the adiabatic approximation to the exchange-correlation(More)
We show that atomistic first-principles calculations based on real-time propagation within time-dependent density functional theory are capable of accurately describing electronic stopping of light projectile atoms in metal hosts over a wide range of projectile velocities. In particular, we employ a plane-wave pseudopotential scheme to solve time-dependent(More)
Motivated by recent experiments, we investigate how NO3-SWNT interactions become energetically favorable with varying oxidation state of a single-walled carbon nanotube (SWNT) using first-principles calculations. Chemisorption becomes less endothermic with respect to physisorption when the SWNT oxidation state is elevated. Importantly, the dissociative(More)
Caught in the light: The fulvalene diruthenium complex shown on the left side of the picture captures sun light, causing initial Ru-Ru bond rupture to furnish a long-lived triplet biradical of syn configuration. This species requires thermal activation to reach a crossing point (middle) into the singlet manifold on route to its thermal storage isomer on the(More)
The interfacial charge-transfer mechanism of the P3HT/fullerene photovoltaic heterojunction is elucidated using density functional theory calculations. Our findings indicate that an efficient adiabatic electron transfer is highly probable due to the presence of an extended electronic state that has a significant probability distribution across the interface(More)
  • 1