Yoshiyasu Tamura

Learn More
We developed a dual oscillator model to facilitate the understanding of dynamic interactions between the parafacial respiratory group (pFRG) and the preBötzinger complex (preBötC) neurons in the respiratory rhythm generation. Both neuronal groups were modeled as groups of 81 interconnected pacemaker neurons; the bursting cell model described by Butera and(More)
Two respiratory-related areas, the para-facial respiratory group/retrotrapezoid nucleus (pFRG/RTN) and the pre-Bötzinger complex/ventral respiratory group (preBötC/VRG), are thought to play key roles in respiratory rhythm. Because respiratory output patterns in response to respiratory and metabolic acidosis differ, we hypothesized that the responses of the(More)
In the statistical analysis of functional brain imaging data, regression analysis and cross correlation analysis between time series data on each grid point have been widely used. The results can be graphically represented as an activation map on an anatomical image, but only activation signal, whose temporal pattern resembles the predefined reference(More)
The respiratory neuronal network activity can be optically recorded from the ventral medulla of the in vitro brainstem-spinal cord preparation using a voltage-sensitive dye. To assess the synchronicity between respiratory-related neurons and the breath-by-breath variability of respiratory neuronal activity from optical signals, we developed a novel method(More)
It has been observed that discrete earthquake events possess memory, i.e., that events occurring in a particular location are dependent on the history of that location. We conduct an analysis to see whether continuous real-time data also display a similar memory and, if so, whether such autocorrelations depend on the size of earthquakes within close(More)
The respiratory neuronal network activity can be optically recorded from the ventral medulla of the in vitro brainstem-spinal cord preparation using a voltage-sensitive dye. To assess the spatiotemporal dynamics of respiratory-related regions of the ventral medulla, we developed a novel non-linear response model called the sigmoid and transfer function(More)
We hypothesize that the network topology within the pre-Bötzinger Complex (preBötC), the mammalian respiratory rhythm generating kernel, is not random, but is optimized in the course of ontogeny/phylogeny so that the network produces respiratory rhythm efficiently and robustly. In the present study, we attempted to identify topology of synaptic connections(More)