Learn More
High dry friction requires intimate contact between two surfaces and is generally obtained using soft materials with an elastic modulus less than 10 MPa. We demonstrate that high-friction properties similar to rubberlike materials can also be obtained using microfiber arrays constructed from a stiff thermoplastic (polypropylene, 1 GPa). The fiber arrays(More)
We report the specific heat of single crystals of the spin ice compound Dy 2 Ti 2 O 7 at temperatures down to 100 mK in the so-called Kagome ice state. In our previous paper, we showed the anisotropic release of residual entropy in different magnetic field directions and reported new residual entropy associated with spin frustration in the Kagome slab for(More)
As liquids crystallize into solids on cooling, spins in magnets generally form periodic order. However, three decades ago, it was theoretically proposed that spins on a triangular lattice form a liquidlike disordered state at low temperatures. Whether or not a spin liquid is stabilized by geometrical frustration has remained an active point of inquiry ever(More)
  • Clifford W Hicks, Daniel O Brodsky, Edward A Yelland, Alexandra S Gibbs, Jan A N Bruin, Mark E Barber +5 others
  • 2014
A sensitive probe of unconventional order is its response to a symmetry-breaking field. To probe the proposed p(x) ± ip(y) topological superconducting state of Sr2RuO4, we have constructed an apparatus capable of applying both compressive and tensile strains of up to 0.23%. Strains applied along ⟨100⟩ crystallographic directions yield a strong,(More)
We present direct evidence for complex p-wave order parameter symmetry and the presence of dynamical chiral order parameter domains of the form px +/- ipy in the ruthenate superconductor Sr2RuO4. The domain structure creates differences in the magnetic field modulation of the critical current of Josephson junctions fabricated on orthogonal faces of Sr2RuO4(More)
The discoveries of superconductivity in heavily boron-doped diamond in 2004 and silicon in 2006 have renewed the interest in the superconducting state of semiconductors. Charge-carrier doping of wide-gap semiconductors leads to a metallic phase from which upon further doping superconductivity can emerge. Recently, we discovered superconductivity in a(More)
Investigations of perovskite oxides triggered by the discovery of high-temperature and unconventional superconductors have had crucial roles in stimulating and guiding the development of modern condensed-matter physics. Antiperovskite oxides are charge-inverted counterpart materials to perovskite oxides, with unusual negative ionic states of a constituent(More)
By means of the magnetocaloric effect, we examine the nature of the superconducting-normal (S-N) transition of Sr(2)RuO(4), a most promising candidate for a spin-triplet superconductor. We provide thermodynamic evidence that the S-N transition of this oxide is of first order below approximately 0.8 K and only for magnetic field directions very close to the(More)
Recently, "application of electric field (E-field)" has received considerable attention as a new method to induce novel quantum phenomena since application of E-field can tune the electronic states directly with obvious scientific and industrial advantages over other turning methods. However, E-field-induced Mott transitions are rare and typically require(More)
  • 1