Yoshio Nishi

Learn More
Single-walled carbon nanotubes (SWNT) are grown by a plasma enhanced chemical vapor deposition (PECVD) method at 600 °C. The nanotubes are of high quality as characterized by microscopy, Raman spectroscopy, and electrical transport measurements. High performance field effect transistors are obtained with the PECVD nanotubes. Interestingly, electrical(More)
InxGa1-xSb channel materials have the highest hole and electron mobility among all III-V semiconductors, high conduction and valence band offsets (CBO/VBO) with lattice matched AlxIn1-xSb for heterostructure MOSFET design [1] and allow low thermal budget MOSFET fabrication (Figure 1). While buried channel HEMT-like devices with excellent electron and hole(More)
InxGa1-xSb is an attractive candidate for high performance III-V p-metal-oxide-semiconductor field effect transistors (pMOSFETs) due to its high bulk hole mobility that can be further enhanced with the use of strain. We fabricate and study InxGa1 xSb-channel pMOSFETs with atomic layer deposition Al2O3 dielectric and self-aligned source/drain formed by ion(More)
An oxygen-assisted hydrocarbon chemical vapor deposition method is developed to afford large-scale, highly reproducible, ultra-high-yield growth of vertical single-walled carbon nanotubes (V-SWNTs). It is revealed that reactive hydrogen species, inevitable in hydrocarbon-based growth, are damaging to the formation of sp(2)-like SWNTs in a diameter-dependent(More)
For single-walled carbon nanotube (SWNT) field effect transistors, vertical scaling of high kappa dielectrics by atomic layer deposition (ALD) currently stands at approximately 8 nm with a subthreshold swing S approximately 70-90 mV/decade at room temperature. ALD on as-grown pristine SWNTs is incapable of producing a uniform and conformal dielectric layer(More)
We report the room temperature electroluminescence (EL) at 1.6 microm of a Ge n+/p light emitting diode on a Si substrate. Unlike normal electrically pumped devices, this device shows a super linear luminescence enhancement at high current. By comparing different n type doping concentrations, we observe that a higher concentration is required to achieve(More)
In the presence of triethylamine, (Z)-(2-acetoxy-1-alkenyl)phenyl-lambda(3)-iodanes react with thioureas or thioamides in MeOH to give 2,4-disubstituted thiazoles directly in good yields. The reaction probably involves generation of highly reactive alpha-lambda(3)-iodanyl ketones through ester exchange of the beta-acetoxy group with liberation of methyl(More)
Precise electrical manipulation of nanoscale defects such as vacancy nano-filaments is highly desired for the multi-level control of ReRAM. In this paper we present a systematic investigation on the pulse-train operation scheme for reliable multi-level control of conductive filament evolution. By applying the pulse-train scheme to a 3 bit per cell HfO2(More)
This work presents a novel method to introduce a sustainable biaxial tensile strain larger than 1% in a thin Ge membrane using a stressor layer integrated on a Si substrate. Raman spectroscopy confirms 1.13% strain and photoluminescence shows a direct band gap reduction of 100meV with enhanced light emission efficiency. Simulation results predict that a(More)