Learn More
Movement of a eukaryotic cell along a substrate occurs by extension of lamellipodia and pseudopodia at the anterior and retraction at the posterior of the cell. The molecular and structural mechanisms of these movements are uncertain. Dictyostelium discoideum contains two forms of myosin. Here we show by immunofluorescence microscopy that non-filamentous(More)
The distribution of actin and myosin in Dictyostelium amebae at different developmental stages was studied by improved immunofluorescence ("agar-overlay" technique). Both were localized at the cortical region of amebae in all early developmental stages. In amebae with polarized morphology, bright fluorescence with antiactin was seen in the anterior(More)
Myosin is thought to act as a major mechanochemical transducer in non-muscle cell motility, but the in situ organization of the molecules has not yet been determined. Here we report the localization of myosin 'rods', analogous to the thick filaments of muscle, by ameliorated immunofluorescence and demonstrate the dynamic translocation of these rods in(More)
Cells that are flattened by overlaying with a thin sheet of agarose can be instantaneously fixed with freezing absolute methanol containing 1% formalin. This procedure results in good preservation of the cytoskeleton. Use of this technique ("agar-overlay immunofluorescence") clarified that (1) Dictyostelium myosin exists in situ as thick filaments (Yumura(More)
This paper summarizes the newly developed immersed finite element method (IFEM) and its applications to the modeling of biological systems. This work was inspired by the pioneering work of Professor T.J.R. Hughes in solving fluid-structure interaction problems. In IFEM, a Lagrangian solid mesh moves on top of a background Eulerian fluid mesh which spans the(More)
The distribution of myosin was studied in amebae of the Ax-3 and NC-4 strains of Dictyostelium migrating at room temperature, using indirect immunofluorescence of aggregation-competent amebae and the agar-overlay technique. Amebae were fixed in methanol-formaldehyde or absolute acetone at -15 degrees C before or after stimulation with micromolar cyclic AMP(More)
To study the role of conventional myosin in nonmuscle cells, we determined the cytoskeletal organization and physiological responses of a Dictyostelium myosin-defective mutant. Dictyostelium hmm cells were created by insertional mutagenesis of the myosin heavy chain gene (De Lozanne, A., and J. A. Spudich. 1987. Science (Wash. DC). 236: 1086-1091). Western(More)
Synchronized cultures of Dictyostelium discoideum were used to study organizational changes of the cytoskeleton during mitotic cell division. The agar-overlay technique (Yumura et al.: J. Cell Biol. 99:894-899, 1984) was employed for immunofluorescence localization and video microscopic observation of living mitotic cells. The mitotic phase was defined by(More)
When 5% dimethyl sulfoxide (DMSO) was applied to Dictyostelium cells, the cells rounded up in shape and cytoplasmic streaming ceased. The cells resumed both cytoplasmic streaming and locomotion in 20 min. SDS PAGE of isolated plasma membrane fractions showed that actin and myosin apparently became dissociated from the plasma membrane by the action of DMSO.(More)
  • Y Fukui
  • 1978
Electron microscopic evidence demonstrated that dimethyl sulfoxide (DMSO) induces formation of giant intranuclear microfilament bundles in the interphase nucleus of a cellular slime mold, Dictyostelium. These giant bundles are approximately giant bundles are approximately 3 micrometer long, 0.85 micrometer wide, and composed of microfilaments 6 nm in(More)