Yoshinori Tokura

Learn More
The magnetoelectric effect--the induction of magnetization by means of an electric field and induction of polarization by means of a magnetic field--was first presumed to exist by Pierre Curie, and subsequently attracted a great deal of interest in the 1960s and 1970s (refs 2-4). More recently, related studies on magnetic ferroelectrics have signalled a(More)
Crystal order is not restricted to the periodic atomic array, but can also be found in electronic systems such as the Wigner crystal or in the form of orbital order, stripe order and magnetic order. In the case of magnetic order, spins align parallel to each other in ferromagnets and antiparallel in antiferromagnets. In other, less conventional, cases,(More)
Recent technical advances in the atomic-scale synthesis of oxide heterostructures have provided a fertile new ground for creating novel states at their interfaces. Different symmetry constraints can be used to design structures exhibiting phenomena not found in the bulk constituents. A characteristic feature is the reconstruction of the charge, spin and(More)
We observe spin blockade due to Pauli exclusion in the tunneling characteristics of a coupled quantum dot system when two same-spin electrons occupy the lowest energy state in each dot. Spin blockade only occurs in one bias direction when there is asymmetry in the electron population of the two dots, leading to current rectification. We induce the collapse(More)
Efforts to find the magnetic monopole in real space have been made in cosmic rays and in particle accelerators, but there has not yet been any firm evidence for its existence because of its very heavy mass, approximately 10(16) giga-electron volts. We show that the magnetic monopole can appear in the crystal momentum space of solids in the accessible(More)
In the classic transistor, the number of electric charge carriers--and thus the electrical conductivity--is precisely controlled by external voltage, providing electrical switching capability. This simple but powerful feature is essential for information processing technology, and also provides a platform for fundamental physics research. As the number of(More)
A magnetic skyrmion is a topologically stable particle-like object that appears as a vortex-like spin texture at the nanometer scale in a chiral-lattice magnet. Skyrmions have been observed in metallic materials, where they are controllable by electric currents. Here, we report the experimental discovery of magnetoelectric skyrmions in an insulating(More)
We present an angle-resolved photoemission doping dependence study of the n-type cuprate superconductor Nd(2-x)Ce(x)CuO(4+/-delta), from the half-filled Mott insulator to the T(c) = 24 K superconductor. In Nd2CuO4, we reveal the charge-transfer band for the first time. As electrons are doped into the system, this feature's intensity decreases with the(More)
We have successfully achieved high speed (~50 ns) unipolar operation in RRAM devices comprised of titanium oxynitride (TiON) combined with a control resistor connected in series. For unipolar switching, programming and erasing pulses can be the same width, typically, a few tens of nano-seconds. This enables high speed and high density cross-point RRAM(More)
Interface-selective probing of magnetism is a key issue for the design and realization of spin-electronic junction devices. Here, magnetization-induced second-harmonic generation was used to probe the local magnetic properties at the interface of the perovskite ferromagnet La(0.6)Sr(0.4)MnO3 with nonmagnetic insulating layers, as used in spin-tunnel(More)