Yoshinori Tokura

Learn More
The magnetoelectric effect--the induction of magnetization by means of an electric field and induction of polarization by means of a magnetic field--was first presumed to exist by Pierre Curie, and subsequently attracted a great deal of interest in the 1960s and 1970s (refs 2-4). More recently, related studies on magnetic ferroelectrics have signalled a(More)
Efforts to find the magnetic monopole in real space have been made in cosmic rays and in particle accelerators, but there has not yet been any firm evidence for its existence because of its very heavy mass, approximately 10(16) giga-electron volts. We show that the magnetic monopole can appear in the crystal momentum space of solids in the accessible(More)
We present an angle-resolved photoemission doping dependence study of the n-type cuprate superconductor Nd(2-x)Ce(x)CuO(4+/-delta), from the half-filled Mott insulator to the T(c) = 24 K superconductor. In Nd2CuO4, we reveal the charge-transfer band for the first time. As electrons are doped into the system, this feature's intensity decreases with the(More)
Interface-selective probing of magnetism is a key issue for the design and realization of spin-electronic junction devices. Here, magnetization-induced second-harmonic generation was used to probe the local magnetic properties at the interface of the perovskite ferromagnet La(0.6)Sr(0.4)MnO3 with nonmagnetic insulating layers, as used in spin-tunnel(More)
A phase transition in an organic charge-transfer complex, which originates from the neutral-ionic valence instability, can be tuned toward zero kelvin with use of external pressure or chemical modification as a control parameter. The phase diagram and observed dielectric behaviors are typical of quantum paraelectricity, yet this zero-kelvin transition point(More)
Helical spin order in magnetic materials has been investigated only in reciprocal space. We visualized the helical spin order and dynamics in a metal silicide in real space by means of Lorentz electron microscopy. The real space of the helical spin order proves to be much richer than that expected from the averaged structure; it exhibits a variety of(More)
Ferroelectrics are electro-active materials that can store and switch their polarity (ferroelectricity), sense temperature changes (pyroelectricity), interchange electric and mechanical functions (piezoelectricity), and manipulate light (through optical nonlinearities and the electro-optic effect): all of these functions have practical applications.(More)
We used high-resolution angle-resolved photoemission spectroscopy to reveal the Fermi surface and key transport parameters of the metallic state of the layered colossal magnetoresistive oxide La1.2Sr1.8Mn2O7. With these parameters, the calculated in-plane conductivity is nearly one order of magnitude larger than the measured direct current conductivity.(More)
Skyrmions, topologically protected vortex-like nanometric spin textures in magnets, have been attracting increasing attention for emergent electromagnetic responses and possible technological applications for spintronics. In particular, metallic magnets with chiral and cubic/tetragonal crystal structure may have high potential to host skyrmions that can be(More)
Many unusual behaviors in complex oxides are deeply associated with the spontaneous emergence of microscopic phase separation. Depending on the underlying mechanism, the competing phases can form ordered or random patterns at vastly different length scales. By using a microwave impedance microscope, we observed an orientation-ordered percolating network in(More)