Learn More
Axon pruning is a common phenomenon in neural circuit development. Previous studies demonstrate that the engulfing action of glial cells is essential in this process. The underlying molecular mechanisms, however, remain unknown. We show that draper (drpr) and ced-6, which are essential for the clearance of apoptotic cells in C. elegans, function in the(More)
The mechanism of phagocytic elimination of dying cells in Drosophila is poorly understood. This study was undertaken to examine the recognition and engulfment of apoptotic cells by Drosophila hemocytes/macrophages in vitro and in vivo. In the in vitro analysis, l(2)mbn cells (a cell line established from larval hemocytes of a tumorous Drosophila mutant)(More)
Testicular Sertoli cells phagocytose apoptotic spermatogenic cells in a manner depending on the membrane phospholipid phosphatidylserine (PS) expressed at the surface of the latter cell type. Our previous studies have indicated that class B scavenger receptor type I (SR-BI) is responsible for the PS-mediated phagocytosis by Sertoli cells. We examined here(More)
Some synthetic lipopeptides, in addition to native lipoproteins derived from both Gram-negative bacteria and mycoplasmas, are known to activate TLR2 (Toll-like receptor 2). However, the native lipoproteins inherent to Gram-positive bacteria, which function as TLR2 ligands, have not been characterized. Here, we have purified a native lipoprotein to(More)
Double-stranded RNA-activated protein kinase (PKR), a serine/threonine kinase, is activated in virus-infected cells and acts as an antiviral machinery of type I interferons. PKR controls several stress response pathways induced by double-stranded RNA, tumor necrosis factor-alpha or lipopolysaccharide, which result in the activation of stress-activated(More)
Pathogenic bacteria mitigate host immunity to establish infections, but the mechanism of this bacterial action has not been fully elucidated. To search for cell wall components that modulate innate immune responses in host organisms, we examined Staphylococcus aureus mutants, which were deficient in components of the cell wall, for pathogenicity in(More)
Integrin βν, one of two β subunits of Drosophila integrin, acts as a receptor in the phagocytosis of apoptotic cells. We here examined the involvement of this receptor in defense against infection by Staphylococcus aureus. Flies lacking integrin βν died earlier than control flies upon a septic but not oral infection with this bacterium. A loss of integrin(More)
Externalization of phosphatidylserine (PS) takes place in apoptotic cells as well as in viable cells under certain circumstances. Recent studies showed that externalized PS is localized at the lipid raft in viable activated immune cells. We found that lipid rafts and PS existed in a mutually exclusive manner in apoptotic cells. The number of PS-exposing(More)
Class B scavenger receptor type I (SR-BI) is a multiligand membrane protein expressed in a variety of cell types. This receptor is responsible for the incorporation of lipids from high density lipoprotein (HDL) by steroidogenic cells, as well as for the phosphatidylserine (PS)-mediated phagocytosis of apoptotic cells by some phagocytic cell types, such as(More)
Influenza virus-infected cells undergo apoptosis and become susceptible to phagocytosis by macrophages in vitro, and this leads to the propagation of the virus being inhibited. We previously showed that inhibitors of phagocytosis increased the rate of mortality among influenza virus-infected mice. However, the mode of the phagocytosis of influenza(More)