Yoshimune Nonomura

Learn More
We discovered that rubbing bulk solids of C 60 between fingertips generates nanoparticles including the ones smaller than 20 nm. Considering the difficulties usually associated with nanoparticle production by pulverisation, formation of nanoparticles by such a mundane method is unprecedented and noteworthy. We also found that nanoparticles of C 60 could be(More)
We evaluated the tactile texture and frictional properties of five soft sponges with various cell sizes. The frictional forces were measured by a friction meter containing a contact probe with human-finger-like geometry and mechanical properties. When the subjects touched these sponges with their fingers, hard-textured sponges were deemed unpleasant. This(More)
Water detection is one of the most crucial psychological processes for many animals. However, nobody knows the perception mechanism of water through our tactile sense. In the present study, we found that a characteristic frictional stimulus with large acceleration is one of the cues to differentiate water from water contaminated with thickener. When(More)
Biological materials are often used as industrial sources; however, the features of their tactile texture have not been examined. Here, we show that the features of biological materials are warm, silky, and non-slippery sensations, which are governed by thermal conductivity, surface energy, and surface roughness. Interestingly, surface roughness is the most(More)
Artificial skin having human skin-like texture is necessary for the development of tactile evaluation systems and for robots that have physical contact with humans. This paper describes a novel type of artificial skin having human skin-like texture and a model of human texture perception. The artificial skin is designed by emulating the surface shape(More)
  • 1