Yoshimune Nonomura

Learn More
Dietary lipids are solubilized in bile acid micelles in the small intestine. In the present study, we investigate the phase behavior of bile acid/model rapeseed oil (or model beef tallow)/water systems to predict interfacial phenomena during consumption of a variety of foods. The structures of molecular assemblies are identified based on polarizing(More)
Wetting on a cylindrical pillar defect is discussed in terms of the free-energy difference ΔG. Wetting is divided into wetting on a flat surface, a pinning effect at the apex of the defect, and wetting on a pillar wall. First, we confirmed that ΔG between before and after ideal wetting on a flat surface can be derived as a function of the contact angle θ in(More)
We discovered that rubbing bulk solids of C 60 between fingertips generates nanoparticles including the ones smaller than 20 nm. Considering the difficulties usually associated with nanoparticle production by pulverisation, formation of nanoparticles by such a mundane method is unprecedented and noteworthy. We also found that nanoparticles of C 60 could be(More)
Water has a unique touch as well as characteristic physical properties. However, nobody knows the real identity of its touch. Here, we show that water creates a stick-slip feel when a small amount is rubbed using fingertip on an artificial skin that mimics the structure of human skin. The results of frictional analyses predict that this stick-slip feel is(More)
Artificial skin having human skin-like texture is necessary for the development of tactile evaluation systems and for robots that have physical contact with humans. This paper describes a novel type of artificial skin having human skin-like texture and a model of human texture perception. The artificial skin is designed by emulating the surface shape(More)
The solid particles are adsorbed at liquid-liquid interfaces and form self-assembled structures when the particles have suitable wettability to both liquids. Here, we show theoretically how the extreme roughness on the particle surface affects their adsorption properties. In our previous work, we discussed the adsorption behavior of the solid particles with(More)
Two types of superhydrophobic surfaces which show lotus and petal effects were induced on photochromic diarylethene microcrystalline surfaces by UV and visible light irradiation and temperature control. On the surfaces showing the lotus effect, a low-adhesion superhydrophobic property is attributed to the surface structure being covered with densely(More)
The solid particles are adsorbed at interfaces and form self-assembled structures when the particles have suitable wettability to both liquids. Here, we show theoretically how the microstructure on the particle surface affects their adsorption properties. The physical properties of the interface adsorbing a particle will be described by taking into account(More)
Understanding the dynamics with which a water droplet penetrates a pore is important because of its relationship with transfer phenomena in plants and animals. Using a high-speed camera, we observe the penetration processes of a water droplet into a cylindrical pore on a silicone substrate. The force on the water droplet is generated by dropping the(More)
Theoretical study is presented on the wetting behaviors of water droplets over a lotus leaf. Experimental results are interpreted to clarify the trade-offs among the potential energy change, the local pinning energy, and the adhesion energy. The theoretical parameters, calculated from the experimental results, are used to qualitatively explain the relations(More)