Yoshiko Fujita

Learn More
Microbial communities in cores obtained from methane hydrate-bearing deep marine sediments (down to more than 300 m below the seafloor) in the forearc basin of the Nankai Trough near Japan were characterized with cultivation-dependent and -independent techniques. Acridine orange direct count data indicated that cell numbers generally decreased with sediment(More)
This study was a preliminary evaluation of ureolytically driven calcite precipitation and strontium coprecipitation for remediating (90)Sr contamination at the Hanford 100-N Area in Washington; in particular the approach is suitable for treating sorbed (90)Sr that could otherwise be a long-term source for groundwater contamination. Geochemical conditions at(More)
Addition of molasses and urea was tested as a means of stimulating microbial urea hydrolysis in the Eastern Snake River Plain Aquifer in Idaho. Ureolysis is an integral component of a novel remediation approach for divalent trace metal and radionuclide contaminants in groundwater and associated geomedia, where the contaminants are immobilized by(More)
SummaryData on ABO blood groups of 4,464,349 Japanese individuals were collected from prefectural health departments, health centers, and Red Cross blood centers in the whole country. Phenotypic and gene frequencies for each subpopulation were calculated and tabulated.Phenotypic frequencies in the whole sample are 29.25% O, 38.65% A, 22.15% B and 9.95% AB.(More)
To evaluate the potential for organic nitrogen addition to stimulate the in situ growth of ammonia oxidizers during a field scale bioremediation trial, samples collected from the Eastern Snake River Plain Aquifer in Idaho before, during, and after the addition of molasses and urea were subjected to PCR analysis of ammonia monooxygenase subunit A (amoA)(More)
3-hydroxyphenylacetylene (3-HPA) served as a novel, activity-dependent, fluorogenic and chromogenic probe for bacterial enzymes known to degrade toluene via meta ring fission of the intermediate, 3-methylcatechol. By this direct physiological analysis, cells grown with an aromatic substrate to induce the synthesis of toluene-degrading enzymes were(More)
BACKGROUND Induced precipitation of phosphate minerals to scavenge trace elements from groundwater is a potential remediation approach for contaminated aquifers. The success of engineered precipitation schemes depends on the particular phases generated, their rates of formation, and their long term stability. The purpose of this study was to examine the(More)
Microbial reduction of hexavalent uranium has been studied widely for its potential role in bioremediation and immobilization of soluble U(VI) in contaminated groundwater. More recently, some microorganisms have been examined for their role in immobilization ofU(VI) via precipitation of uranyl phosphatemineralsmediated bymicrobial phosphate release,(More)
With the increasing demand for rare earth elements (REEs) in many emerging clean energy technologies, there is an urgent need for the development of new approaches for efficient REE extraction and recovery. As a step toward this goal, we genetically engineered the aerobic bacterium Caulobacter crescentus for REE adsorption through high-density cell surface(More)
Two different versions of the 16S rRNA gene, one of which contained an unusual 100-bp insertion in helix 6, were detected in isolate UFO1 acquired from the Oak Ridge Integrated Field-Research Challenge (ORIFRC) site in Tennessee. rRNA was extracted from UFO1 and analyzed by reverse transcriptase-quantitative PCR with insert- and non-insert-specific primers;(More)