Yoshiki Ohgo

  • Citations Per Year
Learn More
Molecular structures of 12 porphyrin analogues, Fe(III)(EtioP)X(1(a)-1(d)), Fe(III)(EtioCn)X(2(a)-2(d)), and Fe(III)(Etio-Pc)X(3(a)-3(d)), where X = F (a), Cl (b), Br (c), and I (d), are determined on the basis of X-ray crystallography. Combined analyses using Mössbauer, (1)H NMR, and EPR spectroscopy as well as SQUID magnetometry have revealed that 3(d)(More)
The spin states of the iron(III) complexes with a highly ruffled porphyrin ring, [Fe(TEtPrP)X] where X = F-, Cl-, Br-, I-, and ClO4(-), have been examined by 1H NMR, 13C NMR, EPR, and Mössbauer spectroscopy. While the F-, Cl-, and Br- complexes adopt a high-spin (S = 5/2) state, the I- complex exhibits an admixed intermediate-spin (S = 5/2, 3/2) state in(More)
Substituent effects of the meso-aryl (Ar) groups on the 1H and 13C NMR chemical shifts in a series of low-spin highly saddled iron(III) octaethyltetraarylporphyrinates, [Fe(OETArP)L2]+, where axial ligands (L) are imidazole (HIm) and tert-butylisocyanide ((t)BuNC), have been examined to reveal the nature of the interactions between metal and porphyrin(More)
The electronic states of a series of saddle-shaped porphyrin complexes [Fe(OMTPP)L(2)](+) and [Fe(TBTXP)L(2)](+) have been examined in solution by (1)H NMR, (13)C NMR, and EPR spectroscopy and by magnetic measurements. While [Fe(OMTPP)(DMAP)(2)](+) and [Fe(TBTXP)(DMAP)(2)](+) maintain the low-spin (S = (1)/(2)) state, [Fe(OMTPP)(THF)(2)](+) and(More)
The title complex, [Fe(C(36)H(36)N(4)O(4))Cl], shows a domed structure with a slightly distorted trapezoidpyramidal core, in which the perpendicular displacements of the Fe(III) atom from the mean pyrrole N(4) plane are 0.418 (3) and 0.465 (3) Å for the two crystallographically independent mol-ecules.
Six-coordinate low-spin iron(III) porphyrinates adopt either common (d(xy))(2)(d(xz),d(yz))(3) or less common (d(xz),d(yz))(4)(d(xy))(1) ground state. In this review article, three major factors that affect the electronic ground state have been examined. They are (i) nature of the axial ligand, (ii) electronic effect of peripheral substituents, and (iii)(More)
The electronic structures of six-coordinate iron(III) octaethylmonoazaporphyrins, [Fe(MAzP)L 2] (+/-) ( 1), have been examined by means of (1)H NMR and EPR spectroscopy to reveal the effect of meso-nitrogen in the porphyrin ring. The complexes carrying axial ligands with strong field strengths such as 1-MeIm, DMAP, CN (-), and (t)BuNC adopt the low-spin(More)
On the basis of the difference in meso-13C chemical shifts, we have concluded that the intermediate-spin iron(III) complexes with highly ruffled and highly saddled porphyrins have different electron configurations. While the latter has a conventional (dxy)2(dxz, dyz)2(dz2)1, the former adopts a novel (dxz, dyz)3(dxy)1(dz2)1.
Bis(pyridine)[meso-tetrakis(heptafluoropropyl)porphyrinato]iron(III), [Fe(THFPrP)Py(2)](+), was reported to be the low-spin complex that adopts the purest (d(xz), d(yz))(4)(d(xy))(1) ground state where the energy gap between the iron d(xy) and d(π)(d(xz), d(yz)) orbitals is larger than the corresponding energy gaps of any other complexes reported previously(More)