Yoshikazu Yuki

Learn More
Mucosally ingested and inhaled antigens are taken up by membranous or microfold cells (M cells) in the follicle-associated epithelium of Peyer's patches or nasopharynx-associated lymphoid tissue. We established a novel M cell-specific monoclonal antibody (mAb NKM 16-2-4) as a carrier for M cell-targeted mucosal vaccine. mAb NKM 16-2-4 also reacted with the(More)
Integrins mediate leukocyte accumulation to the sites of inflammation, thereby enhancing their potential as an important therapeutic target for inflammatory disorders. Integrin activation triggered by inflammatory mediators or signaling pathway is a key step to initiate leukocyte migration to inflamed tissues; however, an appropriately regulated integrin(More)
RNAi-mediated suppression of the endogenous storage proteins in MucoRice-CTB-RNAi seeds affects not only the levels of overexpressed CTB and RAG2 allergen, but also the localization of CTB and RAG2. A purification-free rice-based oral cholera vaccine (MucoRice-CTB) was previously developed by our laboratories using a cholera toxin B-subunit (CTB)(More)
We previously developed a molecularly uniform rice-based oral cholera vaccine (MucoRice-CTB) by using an overexpression system for modified cholera toxin B-subunit, CTB (N4Q) with RNAi to suppress production of the major rice endogenous storage proteins. To establish MucoRice-CTB for human use, here we developed hygromycin phosphotransferase selection(More)
Inflammatory bowel diseases (IBDs) accompany a critical loss of the frontline barrier function that is achieved primarily by intestinal epithelial cells (IECs). Although the gene-regulation pathways underlying these host-defense roles of IECs presumably are deranged during IBD pathogenesis, the quantitative and qualitative alterations of posttranscriptional(More)
The first Good Manufacturing Practices production of a purification-free rice-based oral cholera vaccine (MucoRice-CTB) from transgenic plants in a closed cultivation system yielded a product meeting regulatory requirements. Despite our knowledge of their advantages, plant-based vaccines remain unavailable for human use in both developing and industrialized(More)
Oral vaccination can induce both systemic and mucosal antigen-specific immune responses. To control rampant mucosal infectious diseases, the development of new effective oral vaccines is needed. Plant-based vaccines are new candidates for oral vaccines, and have some advantages over the traditional vaccines in cost, safety, and scalability. Rice seeds are(More)
We assessed the role of CCR5(+)/CCR6(+)/CD11b(+)/CD11c(+) dendritic cells (DCs) for induction of ovalbumin (OVA)-specific antibody (Ab) responses following mucosal immunization. Mice given nasal OVA plus an adenovirus expressing Flt3 ligand (Ad-FL) showed early expansion of CCR5(+)/CCR6(+)/CD11b(+)/CD11c(+) DCs in nasopharyngeal-associated lymphoid tissue(More)
We have developed a rice-based oral cholera vaccine named MucoRice-CTB (Cholera Toxin B-subunit) by using an Agrobacterium tumefaciens–mediated co-transformation system. To assess the genome-wide effects of this system on the rice genome, we compared the genomes of three selection marker–free MucoRice-CTB lines with those of two wild-type rice lines (Oryza(More)
Cholera toxin (CT) induces severe diarrhea in humans but acts as an adjuvant to enhance immune responses to vaccines when administered orally. Nasally administered CT also acts as an adjuvant, but CT and CT derivatives, including the B subunit of CT (CTB), are taken up from the olfactory epithelium and transported to the olfactory bulbs and therefore may be(More)