Learn More
CaBP1-8 are neuronal Ca(2+)-binding proteins with similarity to calmodulin (CaM). Here we show that CaBP4 is specifically expressed in photoreceptors, where it is localized to synaptic terminals. The outer plexiform layer, which contains the photoreceptor synapses with secondary neurons, was thinner in the Cabp4(-/-) mice than in control mice. Cabp4(-/-)(More)
Two kinds of retinal cDNA fragments (OIGRK-R and -C) encoding the putative G-protein-coupled receptor kinases (GRKs) were isolated from medaka, Oryzias latipes. OIGRK-R appears to be closely related to the rhodopsin kinase (RK) found in the outer segments of mammalian photoreceptors, but the deduced amino acid sequence of OIGRK-C shows less than 50%(More)
Phototransduction in vertebrate photoreceptor cells mediated by rhodopsin is one of the most comprehensively examined G protein-coupled receptor (GPCR) signaling pathways. The signal transduction pathway can be mapped from the initial absorption of light to conformational changes within rhodopsin, through activation of the G protein transducin, and to the(More)
Calmodulin-like neuronal Ca2+-binding proteins (NCBPs) are expressed primarily in neurons and contain a combination of four functional and nonfunctional EF-hand Ca2+-binding motifs. The guanylate cyclase-activating proteins 1-3 (GCAP1-3), the best characterized subgroup of NCBPs, function in the regulation of transmembrane guanylate cyclases 1-2 (GC1-2).(More)
Rhodopsin is a cilia-specific GPCR essential for vision. Rhodopsin mislocalization is associated with blinding diseases called retinal ciliopathies. The mechanism by which rhodopsin mislocalizes in rod photoreceptor neurons is not well understood. Therefore, we investigated the roles of trafficking signals in rhodopsin mislocalization. Rhodopsin and its(More)
Mutation in the clarin-1 gene (Clrn1) results in loss of hearing and vision in humans (Usher syndrome III), but the role of clarin-1 in the sensory hair cells is unknown. Clarin-1 is predicted to be a four transmembrane domain protein similar to members of the tetraspanin family. Mice carrying null mutation in the clarin-1 gene (Clrn1(-/-)) show loss of(More)
Visual sensation in vertebrates is triggered when light strikes retinal photoreceptor cells causing photoisomerization of the rhodopsin chromophore 11-cis-retinal to all-trans-retinal. The regeneration of preillumination conditions of the photoreceptor cells requires formation of 11-cis-retinal in the adjacent retinal pigment epithelium (RPE). Using the(More)
Retinoids are chromophores involved in vision, transcriptional regulation, and cellular differentiation. Members of the short chain alcohol dehydrogenase/reductase superfamily catalyze the transformation of retinol to retinal. Here, we describe the identification and properties of three enzymes from a novel subfamily of four retinol dehydrogenases(More)
BACKGROUND Leber congenital amaurosis (LCA), a heterogeneous early-onset retinal dystrophy, accounts for approximately 15% of inherited congenital blindness. One cause of LCA is loss of the enzyme lecithin:retinol acyl transferase (LRAT), which is required for regeneration of the visual photopigment in the retina. METHODS AND FINDINGS An animal model of(More)
Multiphoton excitation fluorescence microscopy (MPM) can image certain molecular processes in vivo. In the eye, fluorescent retinyl esters in subcellular structures called retinosomes mediate regeneration of the visual chromophore, 11-cis-retinal, by the visual cycle. But harmful fluorescent condensation products of retinoids also occur in the retina. We(More)