Yoshihito Ohmura

Learn More
Brown parmelioid lichens comprise a number of distinct genera in one of the most species-rich families of lichen-forming fungi, Parmeliaceae (Ascomycota). In spite of their superficial similarity, a number of studies of brown parmelioids have provided important insight into diversification in lichen-forming fungi with cosmopolitan distributions. In this(More)
We studied the evolutionary history of the Parmeliaceae (Lecanoromycetes, Ascomycota), one of the largest families of lichen-forming fungi with complex and variable morphologies, also including several lichenicolous fungi. We assembled a six-locus data set including nuclear, mitochondrial and low-copy protein-coding genes from 293 operational taxonomic(More)
(137)Cs concentrations in ten species of foliose lichens collected within Tsukuba-city in August 2013 ranged from 1.7 to 35 kBq/kg. The relationships between (137)Cs in two dominant species, Dirinaria applanata and Physcia orientalis, and the air dose rate (μSv/h) at the sampling sites were investigated. (137)Cs in P. orientalis measured about 1 year after(More)
Radiocaesium activity concentrations ((134)Cs and (137)Cs) were measured in parmelioid lichens collected within the Fukushima Prefecture approximately 2 y after the Fukushima Dai-ichi Nuclear Power Plant accident. A total of 44 samples consisting of nine species were collected at 16 points within a 60 km radius of the Fukushima Dai-ichi Nuclear Power Plant.(More)
Recent progress in molecular techniques has begun to alter traditional recognition of lichens as symbiotic organisms comprised of a fungus and photosynthetic partners (green algae and/or cyanobacteria). Diverse organisms, especially various non-photosynthetic bacteria, are now indicated to be integral components of lichen symbiosis. Although(More)
  • 1