Yoshihiro Matsumoto

Learn More
DNA methylation is a major epigenetic mechanism for gene silencing. Whereas methyltransferases mediate cytosine methylation, it is less clear how unmethylated regions in mammalian genomes are protected from de novo methylation and whether an active demethylating activity is involved. Here, we show that either knockout or catalytic inactivation of the DNA(More)
Vascular endothelial growth factor (VEGF) plays a crucial role in the pathogenesis of inflammatory joint disease, including angiogenesis and synovitis. Rheumatoid arthritis is a chronic inflammatory disease characterized by progressive synovitis and subsequent bone destruction mediated by osteoclasts (OCs). In this study, we investigate the effects of VEGF(More)
We study the extent to which vibrotactile stimuli delivered to the head of a subject can serve as a platform for a brain computer interface (BCI) paradigm. Six head positions are used to evoke combined somatosensory and auditory (via the bone conduction effect) brain responses, in order to define a multimodal tactile and auditory brain computer interface(More)
DNA ligase I belongs to a family of proteins that bind to proliferating cell nuclear antigen (PCNA) via a conserved 8-amino-acid motif [1]. Here we examine the biological significance of this interaction. Inactivation of the PCNA-binding site of DNA ligase I had no effect on its catalytic activity or its interaction with DNA polymerase beta. In contrast,(More)
There is increasing evidence that heparan sulfate (HS) plays an essential role in various axon guidance processes. These observations, however, have not addressed whether HS is required cell autonomously as an axonal coreceptor or as an environmental factor that modulates the localization of guidance molecules in the terrain in which growing axons navigate.(More)
Development of the mammalian central nervous system proceeds roughly in four major steps, namely the patterning of the neural tube, generation of neurons from neural stem cells and their migration to genetically predetermined destinations, extension of axons and dendrites toward target neurons to form neural circuits, and formation of synaptic contacts.(More)
—A brain-computer interface (BCI) is a technology for operating computerized devices based on brain activity and without muscle movement. BCI technology is expected to become a communication solution for amyotrophic lateral sclerosis (ALS) patients. Recently the BCI2000 package application has been commonly used by BCI researchers. The P300 speller included(More)
—We propose a method for an improvement of auditory BCI (aBCI) paradigm based on a combination of ASSR stimuli optimization by choosing the subjects' best responses to AM-, flutter-, AM/FM and click-envelope modulated sounds. As the ASSR response features we propose pairwise phase–locking– values calculated from the EEG and next classified using binary(More)
The study presented explores the extent to which tactile stimuli delivered to the ten digits of a BCI-naive subject can serve as a platform for a brain computer interface (BCI) that could be used in an interactive application such as robotic vehicle operation. The ten fingertips are used to evoke somatosensory brain responses, thus defining a tactile brain(More)