Yoshihiro Kubozono

Learn More
Efforts to identify and develop new superconducting materials continue apace, motivated by both fundamental science and the prospects for application. For example, several new superconducting material systems have been developed in the recent past, including calcium-intercalated graphite compounds, boron-doped diamond and-most prominently-iron arsenides(More)
Ionic-liquid gates have a high carrier density due to their atomically thin electric double layer (EDL) and extremely large geometrical capacitance Cg. However, a high carrier density in graphene has not been achieved even with ionic-liquid gates because the EDL capacitance CEDL between the ionic liquid and graphene involves the series connection of Cg and(More)
A new phenacene-type molecule, [8]phenacene, which is an extended zigzag chain of coplanar fused benzene rings, has been synthesised for use in an organic field-effect transistor (FET). The molecule consists of a phenacene core of eight benzene rings, which has a lengthy π-conjugated system. The structure was verified by elemental analysis, solid-state NMR,(More)
The pressure dependence of the superconducting transition temperature (Tc) and unit cell metrics of tetragonal (NH3)yCs0.4FeSe were investigated in high pressures up to 41 GPa. The Tc decreases with increasing pressure up to 13 GPa, which can be clearly correlated with the pressure dependence of c (or FeSe layer spacing). The Tc vs. c plot is compared with(More)
Field-effect transistors (FETs) were fabricated with a thin film of 3,10-ditetradecylpicene, picene-(C14H29)2, formed using either a thermal deposition or a deposition from solution (solution process). All FETs showed p-channel normally-off characteristics. The field-effect mobility, μ, in a picene-(C14H29)2 thin-film FET with PbZr0.52Ti0.48O3 (PZT) gate(More)
We report syntheses of new superconducting metal-doped MoSe2 materials (MxMoSe2). The superconducting MxMoSe2 samples were prepared using a liquid NH3 technique, and can be represented as '(NH3)yMxMoSe2'. The Tcs of these materials were approximately 5.0 K, independent of x and the specific metal atom. X-ray diffraction patterns of (NH3)yNaxMoSe2 were(More)
Many chemists have attempted syntheses of extended π-electron network molecules because of the widespread interest in the chemistry, physics and materials science of such molecules and their potential applications. In particular, extended phenacene molecules, consisting of coplanar fused benzene rings in a repeating W-shaped pattern have attracted much(More)
Doping with the optimum concentration of carriers (electrons or holes) can modify the physical properties of materials. Therefore, improved ways to achieve carrier doping have been pursued extensively for more than 50 years. Metal-intercalation is one of the most important techniques for electron doping of organic / inorganic solids, and has produced(More)
From the C 1s and K 2p photoelectron holograms, we directly reconstructed atomic images of the cleaved surface of a bimetal-intercalated graphite superconductor, (Ca, K)C8, which differed substantially from the expected bulk crystal structure based on x-ray diffraction (XRD) measurements. Graphene atomic images were collected in the in-plane cross sections(More)
We previously discovered multiple superconducting phases in the ammoniated Na-doped FeSe material, (NH3)yNaxFeSe. To clarify the origin of the multiple superconducting phases, the variation of Tc was fully investigated as a function of x in (NH3)yNaxFeSe. The 32 K superconducting phase is mainly produced in the low-x region below 0.4, while only a single(More)
  • 1