Learn More
The regeneration of lost periodontal ligament (PDL) and alveolar bone is the purpose of periodontal tissue engineering. The goal of the present study was to assess the suitability of 3 odontogenic progenitor populations from dental pulp, PDL, and dental follicle for periodontal regeneration when exposed to natural and synthetic apatite surface topographies.(More)
BACKGROUND It has been proposed that 0.5-mm-slice multislice computed tomography (MSCT) is a noninvasive tool for the detection of atherosclerotic plaque, but the validity of such an assessment has not been demonstrated by an invasive investigation. The present study was performed to compare the 0.5-mm-slice MSCT density of plaques with intravascular(More)
Transforming growth factor (TGF) -beta3 is known to selectively regulate the disappearance of murine medial edge epithelium (MEE) during palatal fusion. Previous studies suggested that the selective function of TGF-beta3 in MEE was conducted by TGF-beta receptors. Further studies were needed to demonstrate that the TGF-beta signaling mediators were indeed(More)
We report on the very-low-frequency earthquakes occurring in the transition zone of the subducting plate interface along the Nankai subduction zone in southwest Japan. Seismic waves generated by very-low-frequency earthquakes with seismic moment magnitudes of 3.1 to 3.5 predominantly show a long period of about 20 seconds. The seismicity of(More)
Tooth eruption is a multifactorial process involving movement of existing tissues and formation of new tissues coordinated by a complex set of genetic events. We have used the model of the unopposed rodent molar to study morphological and genetic mechanisms involved in axial movement of teeth. Following extraction of opposing upper molars, lower molars(More)
Cleft palate and skull malformations represent some of the most frequent congenital birth defects in the human population. Previous studies have shown that TGFbeta signaling regulates the fate of the medial edge epithelium during palatal fusion and postnatal cranial suture closure during skull development. It is not understood, however, what the functional(More)
Periodontal regeneration and tissue engineering has re-awakened interest in the role of Hertwig's Epithelial Root Sheath (HERS), an epithelial tissue layer first discovered in amphibians more than a century ago. Using developmental, evolutionary, and cell biological approaches, we have, therefore, performed a careful analysis of the role of HERS in root(More)
LEF1 is a cell-type-specific transcription factor and mediates Wnt signaling pathway by association with its co-activator beta-catenin. Wnt signaling is known to be critical for the specification of cranial neural crest (CNC) cells and may regulate the fate diversity of the CNC during craniofacial morphogenesis. Loss of Lef1 results in arrested tooth(More)
Smad4 is a central intracellular effector of TGF-beta signaling. Smad-independent TGF-beta pathways, such as those mediated by p38 MAPK, have been identified in cell culture systems, but their in vivo functional mechanisms remain unclear. In this study, we investigated the role of TGF-beta signaling in tooth and palate development and noted that conditional(More)
Neural crest cells are multipotential progenitors that contribute to various cell and tissue types during embryogenesis. Here, we have investigated the molecular and cellular mechanism by which the fate of neural crest cell is regulated during tooth development. Using a two- component genetic system for indelibly marking the progeny of neural crest cells,(More)