Learn More
We investigated whether FNIII14, a 22-mer peptide derived from fibronectin (FN) that potently impairs interaction of FN with beta1-integrin, could overcome cell adhesion-mediated drug resistance (CAM-DR) induced by very late antigen (VLA)-4-to-FN interaction in acute myelogenous leukemia (AML). Two AML cell lines, U937 cells and HL-60 cells, and fresh(More)
Homozygotes of the quail silver mutation, which have plumage color changes, also display a unique phenotype in the eye: during early embryonic development, the retinal pigment epithelium (RPE) spontaneously transdifferentiates into neural retinal tissue. Mitf is considered to be the responsible gene and to function similarly to the mouse microphthalmia(More)
The rat demyelination (dmy) mutation serves as a unique model system to investigate the maintenance of myelin, because it provokes severe myelin breakdown in the central nervous system (CNS) after normal postnatal completion of myelination. Here, we report the molecular characterization of this mutation and discuss the possible pathomechanisms underlying(More)
The blue-breasted quail (Coturnix chinensis), the smallest species in the order Galliforms, is a candidate model animal for avian developmental engineering because it is precocious and prolific. This species requires 17 days to hatch and 8 to 9 weeks to mature to an adult body weight of about 50 g, whereas the Japanese quail (Coturnix japonica) requires 16(More)
We recently found a spontaneous tremor mutant in an outbred colony of Sprague-Dawley rats. The tremor behavior was exhibited from around 3 weeks of age and inherited as an autosomal recessive trait. The mutant rats had variously sized vacuoles in the neuropil and white matter throughout the central nervous system, especially in the brain stem, cerebellum,(More)
The demyelination (dmy) rat is a unique mutant exhibiting severe myelin breakdown in the central nervous system (CNS). In this study, we conducted immunohistochemical and morphometrical investigations in the dmy rat. From around 6 weeks of age, the affected rats developed ataxia especially in the hindlimbs. Afterwards, ataxia worsened rapidly, resulting in(More)
Body-tremorous rats were found in a colony of WTC-tm rats and a new coisogenic mutant strain void of the tm mutation was established. Histological analysis revealed that these rat mutants had abnormal vacuoles in the red nucleus of the midbrain, the reticular formation in the brain stem, and the white matter of the cerebellum and spinal cord. Electron(More)
  • 1