Yoshifumi Fukunishi

Learn More
MOTIVATION Sequence alignment techniques have been developed into extremely powerful tools for identifying the folding families and function of proteins in newly sequenced genomes. For a sufficiently low sequence identity it is necessary to incorporate additional structural information to positively detect homologous proteins. We have carried out an(More)
A new approach to predicting the ligand-binding sites of proteins was developed, using protein-ligand docking computation. In this method, many compounds in a random library are docked onto the whole protein surface. We assumed that the true ligand-binding site would exhibit stronger affinity to the compounds in the random library than the other sites, even(More)
A database for the 3D structures of available compounds is essential for the virtual screening by molecular docking. We have developed the LigandBox database (http://ligandbox.protein.osaka-u.ac.jp/ligandbox/) containing four million available compounds, collected from the catalogues of 37 commercial suppliers, and approved drugs and biochemical compounds(More)
We developed a new protocol for in silico drug screening for G-protein-coupled receptors (GPCRs) using a set of "universal active probes" (UAPs) with an ensemble docking procedure. UAPs are drug-like compounds, which are actual active compounds of a variety of known proteins. The current targets were nine human GPCRs whose three-dimensional (3D) structures(More)
We developed a new in silico screening method, which is a structure-based virtual fragment screening with protein-compound docking. The structure-based in silico screening of small fragments is known to be difficult due to poor surface complementarity between protein surfaces and small compound (fragment) surfaces. In our method, several side chains were(More)
A compound's synthetic accessibility (SA) is an important aspect of drug design, since in some cases computer-designed compounds cannot be synthesized. There have been several reports on SA prediction, most of which have focused on the difficulties of synthetic reactions based on retro-synthesis analyses, reaction databases and the availability of starting(More)
We developed a new method to improve the accuracy of molecular interaction data using a molecular interaction matrix. This method was applied to enhance the database enrichment of in silico drug screening and in silico target protein screening using a protein-compound affinity matrix calculated by a protein-compound docking software. Our assumption was that(More)
We developed a new structure-based in-silico screening method using a negative image of a ligand-binding pocket and a multi-protein-compound interaction matrix. Based on the structure of the ligand pocket of the target protein, we designed a negative image, which consists of virtual atoms whose radii are close to those of carbon atoms. The virtual atoms fit(More)
We developed a new molecular dynamics simulation method for protein-ligand binding free energy calculation in an explicit water model. This method consists of three steps: (1) generation of a compound dissociation path starting from a stable protein-compound complex structure, (2) calculation of the free energy surface along the dissociation path, and (3)(More)
We examined the procedures to combine two different in silico drug-screening results to achieve a high hit ratio. When the 3D structure of the target protein and some active compounds are known, both structure-based and ligand-based in silico screening methods can be applied. In the present study, the machine-learning score modification multiple target(More)