Learn More
At Drosophila neuromuscular junctions, there are two synaptic vesicle pools, namely the exo/endo cycling pool (ECP) and the reserve pool (RP). We studied the recruitment process from RP using a fluorescent dye, FMI-43. During high-frequency nerve stimulation, vesicles in RP were recruited for release, and endocytosed vesicles were incorporated into both(More)
Two modes of vesicular release of transmitter occur at a synapse: spontaneous release in the absence of a stimulus and evoked release that is triggered by Ca2+ influx. These modes often have been presumed to represent the same exocytotic apparatus functioning at different rates in different Ca2+ concentrations. To investigate the mechanism of transmitter(More)
1. The role of action potentials in adrenaline secretion was investigated in the rat adrenal medulla. The effects of various treatments on adrenaline secretion from the perfused adrenal medulla were compared with the effects of similar treatments on spike frequency in dissociated adrenal chromaffin cells. 2. KCl concentrations between 10 and 20 mM increased(More)
Two vesicle pools, readily releasable (RRP) and reserve (RP) pools, are present at Drosophila neuromuscular junctions. Using a temperature-sensitive mutant, shibire(ts), we studied pool sizes and vesicle mobilization rates. In shibire(ts), due to lack of endocytosis at nonpermissive temperatures, synaptic currents continuously declined during tetanic(More)
1. Electrophysiological properties of the rat chromaffin cell were studied using intracellular recording techniques. 2. The resting potential in the chromaffin cell was -49 +/- 6 mV (mean +/- S.D., n = 14) in standard saline containing 10 mM-Ca whereas that in Na-free saline was -63 +/- 9 mV (n = 17). At rest, the membrane has a substantial Na permeability.(More)
cAMP is thought to be involved in learning process and known to enhance transmitter release in various systems. Previously we reported that cAMP enhances spontaneous transmitter release in the absence of extracellular Ca(2+) and that the synaptic vesicle protein neuronal-synaptobrevin (n-syb), is required in this enhancement (n-syb-dependent; Yoshihara et(More)
Individual contributions made by different calcium release and sequestration mechanisms to various aspects of excitable cell physiology are incompletely understood. SERCA, a sarco-endoplasmic reticulum calcium ATPase, being the main agent for calcium uptake into the ER, plays a central role in this process. By isolation and extensive characterization of(More)
The sizes and contents of transmitter-filled vesicles have been shown to vary depending on experimental manipulations resulting in altered quantal sizes. However, whether such a presynaptic regulation of quantal size can be induced under physiological conditions as a potential alternative mechanism to alter the strength of synaptic transmission is unknown.(More)
In this study, we tested a hypothesis that activation of calcineurin, Ca2+/calmodulin-dependent protein phosphatase 2B, is an initiating signal for synaptic vesicle endocytosis. We examined effects of calcineurin inhibitors, cyclosporin A or FK506 and calmodulin inhibitors on stimulus-induced FM1-43 uptake into nerve terminals of Drosophila larvae.(More)
To resolve some of differences in reports on the function of Synaptotagmin I (Syt I), we re-examined synaptic transmission at the neuromuscular junction of Drosophila embryos that have mutations in the Syt I gene (syt I). Two major questions addressed were which Ca2+ binding domain, C2A or C2B, sense Ca2+ and is Syt I a negative regulator of spontaneous(More)