Yoshiaki Adachi

Learn More
Development of drugs requires electrophysiological studies of small animals like mice, rats or guinea pigs. Electrocardiography (ECG) of hirsute animals is time-consuming. We have developed a micro magnetometer array with a 9-channel superconducting quantum interference device (SQUID) with a 2.5-mm diameter pickup-coil for noncontacting measurement of(More)
OBJECTIVE To measure neuromagnetic evoked fields in the lumbar spinal canal. METHODS Using a newly developed superconducting quantum interference device (SQUID) fluxmeter, neuromagnetic fields of 5 healthy male volunteers were measured at the surface of the lower back after stimulation of the tibial nerves at the ankles. For validation, we inserted a(More)
This paper investigates dynamic source imaging of the spinal cord electrophysiological activity from its evoked magnetic field by applying the spatial filter version of standardized low-resolution brain electromagnetic tomography (sLORETA). Our computer simulation shows that the sLORETA-based spatial filter can reconstruct the four current sources typically(More)
A biomagnetic measurement system was developed, suitable for the detection of magnetospinogram (MSG) and magnetocardiogram (MCG) signals from the dorsal surface of supine subjects. It is effective for noninvasively observing the electric activity of the spinal cord and/or heart. These biomagnetic signals are extremely weak, and magnetic flux sensors based(More)
In this paper, we present the noise reduction method for a multichannel measurement system where the true underlying signal is spatially low-rank and contaminated by spatially correlated noise. Our proposed formulation applies generalized singular value decomposition (GSVD) with signal recovery approach to extend the conventional subspace-based methods for(More)
We have developed a magnetospinography (MSG) system that detects weak magnetic fields associated with spinal cord neural activity using an array of low-temperature superconducting quantum interference device (SQUID)-based magnetic flux sensors. A functional image of the spinal cord can be obtained noninvasively by using this system, and it is effective for(More)
The genes of small animals such as mice and rats can be relatively easily manipulated and using artificial models, allowing the realization of diseases due to genetic disorders. A number of small animals have been used in experimental trials to model diseases to enable a better understanding of the causes of genetic disorders and ways to treat diseases in(More)
BACKGROUND We previously reported the usefulness of neuromagnetic recordings for the diagnosis of disorders in peripheral nerves or the spinal cord. However, there have been no reports on incomplete conduction block of the spinal cord, which is clinically common in conditions such as cervical myelopathy. Here, we estimated the usefulness of measuring spinal(More)
BACKGROUND An artificial object that imitates human brain activity is called "phantom" and is used for evaluation of magnetoencephalography (MEG) systems. The accuracy of the phantom itself had not been guaranteed in the previous studies, although role of the phantom is to evaluate the accuracy of MEG measurement. The purposes of this paper are to develop a(More)
Diagnosis of nervous system disease is greatly aided by functional assessments and imaging techniques that localize neural activity abnormalities. Electrophysiological methods are helpful but often insufficient to locate neural lesions precisely. One proposed noninvasive alternative is magnetoneurography (MNG); we have developed MNG of the spinal cord(More)