Yordan S. Yordanov

Learn More
Adventitious rooting is an essential but sometimes rate-limiting step in the clonal multiplication of elite tree germplasm, because the ability to form roots declines rapidly with age in mature adult plant tissues. In spite of the importance of adventitious rooting, the mechanism behind this developmental process remains poorly understood. We have described(More)
Regulation of secondary (woody) growth is of substantial economic and environmental interest but is poorly understood. We identified and subsequently characterized an activation-tagged poplar (Populus tremula × Populus alba) mutant with enhanced woody growth and changes in bark texture caused primarily by increased secondary phloem production. Molecular(More)
We show a distinct and previously poorly characterized response of poplar (Populus tremula × Populus alba) roots to low nitrogen (LN), which involves activation of root growth and significant transcriptome reprogramming. Analysis of the temporal patterns of enriched ontologies among the differentially expressed genes revealed an ordered assembly of(More)
Trees from temperate latitudes transition between growth and dormancy to survive dehydration and freezing stress during winter months. We used activation tagging to isolate a dominant mutation affecting release from dormancy and identified the corresponding gene EARLY BUD-BREAK 1 (EBB1). We demonstrate through positioning of the tag, expression analysis,(More)
Using activation tagging in Populus, we have identified five mutant lines showing changes in their adventitious rooting. Among the affected lines, three showed increased and two decreased adventitious rooting. We have positioned the tag in the mutant lines via recovering genomic sequences flanking the left-hand border of the activation tagging vector and(More)
Perception of environmental cues and adaptation to changing environmental conditions are crucial for survival of sessile organisms like plants. This is even more important for woody perennial species like trees that can occupy a site for thousands of years. We have previously shown that under low nitrogen (LN), poplar trees display a vigorous and(More)
Auxin responsive promoter DR5 reporter system is functional in Populus to monitor auxin response in tissues including leaves, roots, and stems. We described the behavior of the DR5::GUS reporter system in stably transformed Populus plants. We found several similarities with Arabidopsis, including sensitivity to native and synthetic auxins, rapid induction(More)
Knowledge of the functional relationship between genes and organismal phenotypes in perennial plants is extremely limited. Using a population of 627 independent events, we assessed the feasibility of activation tagging as a forward genetics tool for Populus. Mutant identification after 2 years of field testing was nearly sevenfold (6.5%) higher than in(More)
Aspen (Populus tremuloides) trees growing under elevated [CO2] at a free-air CO2 enrichment (FACE) site produced significantly more biomass than control trees. We investigated the molecular mechanisms underlying the observed increase in biomass by producing transcriptomic profiles of the vascular cambium zone (VCZ) and leaves, and then performed a(More)