Yoram Etzion

Shani Dror3
Michal Mor2
Hovav Gabay2
Arie Moran2
3Shani Dror
2Michal Mor
2Hovav Gabay
2Arie Moran
Learn More
Recordings from cerebellar Purkinje cell dendrites have revealed that in response to sustained current injection, the cell firing pattern can move from tonic firing of Ca(2+) spikes to doublet firing and even to quadruplet firing or more complex firing. These firing patterns are not modified substantially if Na(+) currents are blocked. We show that the(More)
High pressure, which induces central nervous system (CNS) dysfunction (high-pressure neurological syndrome) depresses synaptic transmission at all synapses examined to date. Several lines of evidence indicate an inhibitory effect of pressure on Ca(2+) entry into the presynaptic terminal. In the present work we studied for the first time the effect of(More)
Studies of atrial electrophysiology (EP) in rodents are challenging, and available data are sparse. Herein, we utilized a novel type of bipolar electrode to evaluate the atrial EP of rodents through small lateral thoracotomy. In anesthetized rats and mice, we attached two bipolar electrodes to the right atrium and a third to the right ventricle. This(More)
Activation of ERK signaling may promote cardioprotection from ischemia–reperfusion (I/R) injury. ZnT-1, a protein that confers resistance from zinc toxicity, was found to interact with Raf-1 kinase through its C-terminal domain, leading to downstream activation of ERK. In the present study, we evaluated the effects of ZnT-1 in cultured murine cardiomyocytes(More)
A noninvasive, effective approach for immediate and painless heart pacing would have invaluable implications in several clinical scenarios. Here we present a novel strategy that utilizes the well-known mechano-electric feedback of the heart to evoke cardiac pacing, while relying on magnetic microparticles as leadless mechanical stimulators. We demonstrate(More)
BACKGROUND Right ventricular (RV) pacing generates regional disparities in electrical activation and mechanical function (ventricular dyssynchrony). In contrast, left ventricular (LV) or biventricular (BIV) pacing can improve cardiac efficiency in the setting of ventricular dyssynchrony, constituting the rationale for cardiac resynchronization therapy(More)
  • 1