Learn More
Some studies suggest that complex arm movements in humans and monkeys may optimize several objective functions, while others claim that arm movements satisfy geometric constraints and are composed of elementary components. However, the ability to unify different constraints has remained an open question. The criterion for a maximally smooth (minimizing(More)
Despite many reports indicating the existence of precise firing sequences in cortical activity, serious objections have been raised regarding the statistics used to detect them and the relations of these sequences to behavior. We show that in behaving monkeys, pairs of spikes from different neurons tend to prefer certain time delays when measured in(More)
Recent studies suggested that a single motor cortical neuron typically encodes multiple movement parameters, but parameters often display strong temporal interdependencies. To address this issue, we recorded single-unit activity while macaque monkeys made continuous movements and employed an analysis that explicitly considered temporal correlations between(More)
MOTIVATION Analysis of large-scale expression data is greatly facilitated by the availability of gene ontologies (GOs). Many current methods test whether sets of transcripts annotated with specific ontology terms contain an excess of 'changed' transcripts. This approach suffers from two main limitations. First, since gene expression is continuous rather(More)
We show that times of spikes can be very precise. In the cerebral cortex, where each nerve cell is affected by thousands of others, it is the common belief that the exact time of a spike is random up to an averaged firing rate over tens of milliseconds. In a brain slice, precise time relations of several neurons have been observed. It remained unclear(More)
Natural actions can be described as chains of simple elements, whereas individual motion elements are readily concatenated to generate countless movement sequences. Sequence-specific neurons have been described extensively, suggesting that the motor system may implement temporally complex motions by using such neurons to recruit lower-level movement neurons(More)
Animal-animal recognition within, and across species, is essential for predator avoidance and social interactions. Despite its essential role in orchestrating responses to animal cues, basic principles of information processing by the vomeronasal system are still unknown. The medial amygdala (MeA) occupies a central position in the vomeronasal pathway,(More)
Although previous studies have shown that activity of neurons in the motor cortex is related to various movement parameters, including the direction of movement, the spatial pattern by which these parameters are represented is still unresolved. The current work was designed to study the pattern of representation of the preferred direction (PD) of hand(More)
Cholinergic imbalances occur after traumatic effects and in the initial stages of neurodegenerative diseases, but their long-lasting effects remained largely unexplained. To address this, we used TgS transgenic mice constitutively overexpressing synaptic acetylcholinesterase (AChE-S) and presenting a complex phenotype of progressive neurodeterioration. T1-(More)
The mouse vomeronasal organ (VNO) plays a critical role in semiochemical detection and social communication. Vomeronasal stimuli are typically secreted in various body fluids. Following direct contact with urine deposits or other secretions, a peristaltic vascular pump mediates fluid entry into the recipient's VNO. Therefore, while vomeronasal sensory(More)