#### Filter Results:

- Full text PDF available (6)

#### Publication Year

2008

2014

- This year (0)
- Last 5 years (2)
- Last 10 years (6)

#### Publication Type

#### Co-author

#### Journals and Conferences

#### Key Phrases

Learn More

- Haseo Ki, Yoonbok Lee
- 2009

We study properties of zeros of the derivatives of the Riemann zeta function ζ(s). Levinson and Montgomery [8] achieved several important theorems for the behavior of zeros of ζ(s) (m = 1, 2, 3, · · · ). If we assume the Riemann hypothesis, ζ ′(s) has no non-real zero in Re s < 1 2 and ζ(s) (m > 1) has at most finitely many zeros in Re s < 1 2 .… (More)

- Bruce C. Berndt, Yoonbok Lee, JAEBUM SOHN
- 2009

On two pages in his lost notebook, Ramanujan recorded several theorems involving the modified Bessel function Kν(z). These include Koshliakov’s formula and Guinand’s formula, both connected with the functional equation of nonanalytic Eisenstein series, and both discovered by these authors several years after Ramanujan’s death. Other formulas, including one… (More)

- David W. Farmer, Steven M. Gonek, Yoonbok Lee
- J. London Math. Society
- 2014

Abstract. The complex zeros of the Riemannn zeta-function are identical to the zeros of the Riemann xi-function, ξ(s). Thus, if the Riemann Hypothesis is true for the zetafunction, it is true for ξ(s). Since ξ(s) is entire, the zeros of ξ(s), its derivative, would then also satisfy a Riemann Hypothesis. We investigate the pair correlation function of the… (More)

- VORRAPAN CHANDEE, Yoonbok Lee, SHENG-CHI LIU
- 2012

Assuming the Generalized Riemann Hypothesis (GRH), we show using the asymptotic large sieve that 91% of the zeros of primitive Dirichlet L-functions are simple. This improves on earlier work of Özlük which gives a proportion of at most 86%. We further compute an q-analogue of the Pair Correlation Function F (α) averaged over all primitive Dirichlet… (More)

- Haseo Ki, Yoonbok Lee
- 2010

We investigate the zeros of degree one L-functions from the extended Selberg class off the critical line.

- Yoonbok Lee
- 2008

A linear combination L(s) of two Dirichlet L-functions has infinitely many complex zeros in Re s < 0. In this note we prove an infinity of complex zeros of L(k)(s) in the same region.

- ‹
- 1
- ›