Learn More
A thermo-sensitive chitosan-Pluronic copolymer (CP) was prepared by grafting mono-carboxyl Pluronic onto the chitosan using 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide (EDC) and N-hydroxysuccinimide (NHS). Indomethacin (IMC)-loaded nanoaggregate (NA) was prepared using the synthesized CP by the direct dissolution method. The critical aggregate(More)
Both osteoconductivity and osteoinductivity are equally very important aspects in a new bone formation and ultimately for bone regeneration. The purpose of this study was to create an environment, not only osteoconductive but also osteoinductive on titanium (Ti) surface. To do this bone morphogenetic protein-2 (BMP-2) nanocomplex (NC) was fabricated by(More)
Low efficiency and stability problems have been major issues in the formulation of engineered monoclonal antibodies (mAbs) for a variety of therapeutic uses, which may be severer for applying to encapsulation into nanoparticle (NP). In this study, the formulation and stabilizing conditions to encapsulate a potential mAb (3D8 scFv) into biodegradable(More)
The strategy of growth factor delivery to specific sites for therapeutic applications has been considered an essential process in biomedical fields despite some obstacles, such as a non-controlled release with initial burst. This article focuses on particulate systems using heparin for the controlled delivery of heparin-binding growth factors (HBGFs), an(More)
Cytoplasmic delivery of a monoclonal antibody (mAb) with nucleic acid-hydrolyzing activity (3D8 scFv) using poly(lactic-co-glycolic acid) nanoparticles (PLGA NPs) was investigated for persistent anti-viral effect. 3D8 scFv-loaded PLGA (3D8–PLGA) NPs were prepared via a double emulsion method that was previously optimized. Flow cytometry and confocal(More)
Injectable hydrogels have been studied for potential applications for articular cartilage regeneration. In this study, a thermosensitive chitosan-Pluronic (CP) hydrogel was designed as an injectable cell delivery carrier for cartilage regeneration. The CP conjugate was synthesized by grafting Pluronic onto chitosan using EDC/NHS chemistry. The sol-gel phase(More)
Three-dimensional scaffolds like hydrogels can be used for cell and drug delivery and have become a major research focus in tissue engineering. Presently, we investigated the regenerative potency of platelet-rich plasma (PRP) combined with a chondrocyte/hydrogel composite scaffold in the repair of articular cartilage defects using a rabbit model. Primary(More)
This work describes the development of heparinized polymeric micelle as a novel injectable carrier for the dual drug delivery that can simultaneously release basic fibroblast growth factor (bFGF) and indomethacin (IMC), which can promote the regeneration of damaged tissue and prevent the inflammatory response after implantation. Tetronic-PCL-heparin for the(More)
Low molecular weight heparin (LH) has been reported to have anti-fibrotic and anti-cancer effects. To enhance the efficacy and minimize adverse effects of LH, a low molecular weight heparin-pluronic nanogel (LHP) was synthesized by conjugating carboxylated pluronic F127 to LH. The LHP reduced anti-coagulant activity by about 33% of the innate activity.(More)
An Arg-Gly-Asp (RGD) peptide-immobilized electrospun matrix of polyurethane (PU) was developed for the enhanced affinity of endothelial cells (EC). The novel PU matrix was fabricated as a vascular shape using the electrospinning technique. Then, poly(ethylene glycol) (PEG) was immobilized on the porous PU matrix as a spacer, followed by conjugating RGD(More)