Yoon Cheol Lee

  • Citations Per Year
Learn More
The morphology and electronic structure of metal oxides, including TiO(2) on the nanoscale, definitely determine their electronic or electrochemical properties, especially those relevant to application in energy devices. For this purpose, a concept for controlling the morphology and electrical conductivity in TiO(2), based on tuning by electrospinning, is(More)
A nano-Si/FeSi2Ti hetero-structure has been synthesized for highly reversible Li-ion batteries by using a simple melt-spinning method. We demonstrate that this composite has a very peculiar core/shell structure in which the FeSi2Ti alloy plays various pivotal roles as a mechanically supporting backbone and as an electronic pathway for the active Si attached(More)
A procedure has been established to evaluate the reliability of different designs for an epoxy-bonded laser-to-fiber assembly. The procedure includes 1) epoxy characterization to select right materials and curing schedules, 2) bonding strength test to define failure criteria at interfaces, and 3) finite element modeling to choose the designs with acceptable(More)
We offer a brand new strategy for enhancing Li ion transport at the surface of LiFePO4/C nanofibers through noble Li ion conducting pathways built along reduced carbon webs by phosphorus. Pristine LiFePO4/C nanofibers composed of 1-dimensional (1D) LiFePO4 nanofibers with thick carbon coating layers on the surfaces of the nanofibers were prepared by the(More)
We here report on very high capacity (11,000 mA h g(-1)), superb rate capability (4500 mA h g(-1) at 5000 mA g(-1)) and high reversibility of Li-air batteries using α-MnO2 NW catalysts mainly associated with their relatively large amount of Mn(3+) exposed on the NW surface and a unique mechanism for deposition of discharge products. Our findings of the(More)
  • 1